


2. Recall the notions of set equality and ‘subset relations’:

• Let A,B be sets. A is said to be equal to B if both of the following statements (†), (‡)
hold:
(†) For any object x, [if (x ∈ A) then (x ∈ B)].
(‡) For any object y, [if (y ∈ B) then (y ∈ A)].
We write A = B.

• Let A,B be sets. A is said to be a subset of B if the following statement (†) holds:
(†) For any object x, [if (x ∈ A) then (x ∈ B)].
We write A ⊂ B (or B ⊃ A).
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3. Question.

What do we mean by ‘A is not a subset of B’?

Answer.

A is not a subset of B exactly when some element of A fails to be an element of B.

More useful formulation for the same thing (though formal):
• There exists some object x0 such that (x0 ∈ A and x0 /∈ B).

In this situation, we write A ⊂/ B.
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4. Example (a).
Let C = {x | x = n4 for some n ∈ N}, D = {x | x = n2 for some n ∈ N}.
The statements below hold:

(1) C ⊂ D. (2) D ⊂/ C.

Heuristic ideas for the statements:
• C is the set of all biquadratic numbers while D is the set of all square numbers.
• Every biquadratic number is the square of a square number. So we expect ‘C ⊂ D’ to

hold.
• There may be some square number which is not a biquadratic number; for instance,

the square of a non-square number. So we expect ‘D ⊂/ C’ to hold.

These are the core ideas in the proofs. They need be present before we write the proofs.

We organize these ideas to give a coherent argument, with reference to the definitions of
C,D, ‘⊂’.
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6. Below are other examples similar to Example (a).
Example (b).
Let C = {x | x = r4 for some r ∈ Q}, D = {x | x = r2 for some r ∈ Q}.
The statements below hold:

(1) C ⊂ D. (2) D ⊂/ C.

Example (c).
Let C = {x | x=s+t

√
2 for some s, t∈Z}, D = {x | x=u+v

√
3 for some u, v∈Z}.

The statements below hold:

(1) Z ⊂ C ∩D. (2) C ⊂/ D. (3) D ⊂/ C. (4) C ∩D ⊂ Z. (5) C ∩D = Z.

Example (d).
Let C = {x | x=s+t

√
2 for some s, t∈Q}, D = {x | x=u+v

√
3 for some u, v∈Q}.

The statements below hold:

(1) Q ⊂ C ∩D. (2) C ⊂/ D. (3) D ⊂/ C. (4) C ∩D ⊂ Q. (5) C ∩D = Q.
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7. Example (e).
Let C = {ζ ∈ C : |Re(ζ)| + |Im(ζ)| < 1}, D = {ζ ∈ C : |ζ| < 1}.
The statements below hold:

(1) C ⊂ D. (2) D ⊂/ C.

Heuristic ideas for the statements, which can be visualized using the Argand plane:
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8. Proofs of the statements in Example (e).
(1) [We want to prove ‘for any ζ ∈ C, if ζ ∈ C then ζ ∈ D’.]

Pick any object ζ . Suppose ζ ∈ C.
[What to deduce? ‘ζ ∈ D’. What does it read? ‘|ζ| < 1.’ How to reach ‘ζ ∈ D’? Find
out what ‘ζ ∈ C’ reads: it is |Re(ζ)| + |Im(ζ)| < 1.]
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Proofs of the statements in Example (e).
(2) [Preparation: find out what is to be done. We want to prove that there exists some

ζ0 such that ζ0 ∈ D and ζ0 /∈ C. (This is an existence statement.) So we look for an
appropriate ζ0. · · · ]
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9. Below are other examples similar to Example (e).
Example (f).
Let C = {ζ ∈ C : |ζ − 1| ≤ 1}, D = {ζ ∈ C : |ζ| ≤ 2}.
The statements below hold:

(1) C ⊂ D. (2) D ⊂/ C.

Example (g).
Let C = {ζ ∈ C : Re(ζ) ≥ 0}, D = {ζ ∈ C : Im(ζ) ≥ 0}, E = {ζ ∈ C : |ζ − 1− i| ≤ 1}.
The statements below hold:

(1) E ⊂ C ∩D. (2) C ⊂/ D. (3) D ⊂/ C.

Example (h).
Let C = {ζ ∈ C : |ζ − 4| < 5}, D = {ζ ∈ C : |ζ + 4| < 5}, E = {ζ ∈ C : |ζ| < 3}.
The statements below hold:

(1) C ⊂/ D. (2) D ⊂/ C. (3) E ⊂/ C. (4) E ⊂/ D. (5) E ⊂ C ∪D.
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10. Example (i).
Let G be an (m × n)-matrix with real entries, and H be an (n × p)-matrix with real
entries. The statements below hold:

(1) The null space of H is a subset of the null space of GH .
(2) Suppose the null space of G is {0n}. Then the null space of GH is a subset of the null

space of H .
Remark. The null space N (K) of a (p× q)-matrix K with real entries is defined by
N (K) = {v ∈ Rq : Kv = 0p}.

11. Proofs of the statements in Example (i).
(1) [We want to prove ‘for any x ∈ Rp, if x ∈ N (H) then x ∈ N (GH)’.]

Pick any x ∈ Rp. Suppose x ∈ N (H).
[What to deduce? ‘x ∈ N (GH)’. What does it read? ‘(GH)x = 0m.’ How to reach
‘(GH)x = 0m’? Find out what ‘x ∈ N (H)’ reads: it is ‘Hx = 0n’.]
Then by the definition of N (H), we have Hx = 0n.
Therefore (GH)x = G(Hx) = G0n = 0m.
Hence, by the definition of N (GH), we have x ∈ N (GH).
It follows that N (H) ⊂ N (GH).
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(2) Suppose the null space of G is {0n}.

[We want to deduce, under the above assumption, that ‘N (GH) ⊂ N (H)’, which
reads: ‘for any x ∈ Rp, if x ∈ N (GH) then x ∈ N (H)’.]

Pick any u ∈ Rp. Suppose u ∈ N (GH).

[What to deduce? ‘u ∈ N (H)’. What does it read? ‘Hu = 0n.’ How to reach
‘Hu = 0n’? Find out what ‘u ∈ N (GH)’ reads: it is ‘(GH)u = 0m’.]

Then by the definition of N (GH), we have G(Hu) = (GH)u = 0m.

Therefore, by the definition of N (G), we have Hu ∈ N (G).

Since N (G) = {0n}, we have Hu ∈ {0n}. Then Hu = 0n.

Therefore, by the definition of N (H), we have u ∈ N (H).

It follows that N (GH) ⊂ N (H).
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12. Example (j).
Let S, T be subsets of Rn, G be an (m × n)-matrix with real entries, and H be an
(n× p)-matrix with real entries.

Define
S ′ = {y ∈ Rm : y = Gx for some x ∈ S},
T ′ = {y ∈ Rm : y = Gx for some x ∈ T}.

Define
S∗ = {u ∈ Rp : x = Hu for some x ∈ S},
T ∗ = {u ∈ Rp : x = Hu for some x ∈ T}.

The statements below hold:
(1) Suppose S is a subset of T . Then S ′ is a subset of T ′.
(2) Suppose S is a subset of T . Then S∗ is a subset of T ∗.

14



13. Proofs of the statements in Example (j).
(1) Suppose S is a subset of T .

[We want to deduce, under the above assumption, that ‘S ′ is a subset of T ′ ’, which
reads: ‘for any y ∈ Rm, if y ∈ S ′ then y ∈ T ′ ’.]

[Recall what S ′ and T ′ are:
S ′ = {y ∈ Rm : y = Gx for some x ∈ S},
T ′ = {y ∈ Rm : y = Gx for some x ∈ T}, in which G is some fixed (m× n)-matrix.]

Pick any object y ∈ Rm. Suppose y ∈ S ′.

[What to deduce? ‘y ∈ T ′ ’. What does it read? ‘Unwrap’ ‘y ∈ T ′ ’ to see what it is.
How to reach ‘y ∈ T ′ ’? ‘Unwrap’ ‘y ∈ S ′ ’ to see what may help us.]

Then by the definition of S ′, there exists some x ∈ S such that y = Gx.

Note that x ∈ S, and by assumption S is a subset of T . Then, by the definition of
subset relations, x ∈ T .

Therefore x ∈ T and y = Gx for the same x,y.
Hence, by the definition of T ′, we have y ∈ T ′.

It follows that S ′ ⊂ T ′.

15



(2) Suppose S is a subset of T .
[We want to deduce, under the above assumption, that that ‘S∗ is a subset of T ∗ ’,
which reads:‘for any u ∈ Rp, if u ∈ S∗ then u ∈ T ∗ ’.]

[Recall what S∗ and T ∗ are:
S∗ = {u ∈ Rp : x = Hu for some x ∈ S},
T ∗ = {u ∈ Rp : x = Hu for some x ∈ T}, in which H is some fixed (m× p)-matrix.]

Pick any object u ∈ Rp. Suppose u ∈ S∗.

[What to deduce? ‘u ∈ T ∗ ’. What does it read? ‘Unwrap’ ‘u ∈ T ∗ ’ to see what it is.
How to reach ‘u ∈ T ∗ ’? ‘Unwrap’ ‘u ∈ S∗ ’ to see what may help us.]

Then by the definition of S∗, there exists some x ∈ S such that x = Hu.

Note that x ∈ S, and by assumption S is a subset of T . Then, by the definition of
subset relations, x ∈ T .

Therefore x ∈ T and x = Hu, for the same x,u.
Hence, by the definition of T ∗, we have u ∈ T ∗.

It follows that S∗ ⊂ T ∗.
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