1. Definition.
Let z be a complex number.

The modulus of z, which we denote by |z|, is defined by |z| = 1/(Re(2))? + (Im(2))2.

The expression z = |z|(cos(f) +isin(f)) (for some appropriate real number 6) is called the

polar form of z.

If z # 0, then such a number 6 is called an argument for z. Furthermore, if —m < 0 < m,

then 60 is called the principal argument of z.

Remark. This definition makes sense is guaranteed by the statement below, which

needs be justified carefully:

e Let z be a complex number. There exists some 6 € IR such that z = |z|(cos(6)+1isin(f)).



Further remark. Multiplication and division for complex numbers can be given a nice

geometric interpretation in terms of polar form:

Suppose z,w are non-zero complex numbers, with arguments 6, respectively.
Then: | |

(a) zw = |z||w]|(cos(8 + ¢) + isin(& + )), and

(b) The modulus of zw is |z||w|, and ...

(¢) 8 + ¢ is an argument for zw, and ...

imaginary axis
A 2w = |2||w|(cos( + @) +isin(0 + )

w = |w|(cos(p) + isin(p))

z = |z|(cos(8) + isin(d))

> real axis




2. Lemma (1). (Special case of De Moivre’s Theorem.)
Let 6 be a real number. For any n € N\{0}, (cos(@) + isin(f))" = cos(nd) + isin(nd).

Proof. Let 6 be a real number.
e For any n € N\{0}, denote by P(n) the proposition
(cos(6) + isin(f))" = cos(nb) + isin(nh).

e (cos(f) + sin(#))! = cos(1-0) +isin(1-0). Then P(1) is true.
e Let & € N\{0}. Suppose P(k) is true. Then (cos(8) + isin())* = cos(k@) + i sin(k@).
We prove that P(k + 1) is true:

(cos(#) + i sin(#))"
— (cos(0) + isin(6))"(cos(A) + isin())

(cos(k@) + isin(k0))(cos(f) + isin(0))
= (cos(k@) cos(f) — sin(kf) sin(6)) + i(sin(kb) cos(8) + cos(k6) sin(6))
= cos(kf 4 0) + isin(kf + 6) = cos((k + 1)0) + isin((k + 1)0)

Hence P(k + 1) is true.
e By the Principle of Mathematical Induction, P(n) is true for any n € N\{0}.



3. De Moivre’s Theorem. |
Let 0 be a real number. For any m € Z, (cos(f) + isin(0))™ = cos(m#@) + isin(md).
Proof. Let 0 be a real number. Let m € Z.

e (Case 1). Suppose m = 0. Then
(cos(0)+isin(9))™ = (cos(0)+isin(9))’ = 1 = (cos(0-0)+isin(0-6)) = cos(mb)-+i sin(md).
e (Case 2). Suppose m > 0.
By Lemma (1), we have (cos(f) + ¢sin(6))™ = cos(m#) + i sin(m@).
e (Case 3). Suppose m < 0. Define n = —m. Then 1 € N\{0}. Therefore

It
(cos(6) + isin(@))"

1
@ o cos( n@ + i sin(nd)
@ cos(nf) — isin(nd)

cos(m 9) + i sin(md).

(cos(f) +isin(f))™ =

Hence in any case, (cos(6) + isin(6))™ = cos(m@) + i sin(mb).



4. Definition.

Let ¢ be a complex number. Let n be a positive integer. ( is called an n-th root of
unity if (" = 1.
Remark. ( is an n-th root of unity iff ¢ is a root of the polynomial z" — 1 in the

complex numbers. )

5. Theorem (2).
2
Let n be a positive integer. Write 6,, = " Define wy, = cos(f,) + isin(f,).
n

(a) wy, is an n-th root of unity:.
(b) The n-th roots of unity are the n complex numbers of modulus 1, given by

2 n—1
L, wn,wp™, oy wy .



Remark to Theorem (2). How to visualize these n numbers in terms of plane
geometry”?

They are the n vertices of the regular n-sided polygon inscribed in the unit circle with

centre 0 in the Argand plane, with one vertex at the point‘ L.
n=23a: n = 4:

imaginary axis o imaginary axis

A A

=14

w3

> real axis real axis




Imaginary axis ’ imaginary axis
2 y g Yy
A : . A
Wws W 2
6 Wwe
w52
i real axis 3 > real axis
_:::'1.
w54 we w6

> real axis > real axis




6. Tacit assumption need in the argument for Theorem (2).
A tacit assumption, known as Division Algorithm for integers, is used in the argu-

ment. It reads:

Let u,v € Z. Suppose v # (0. Then there exist some unique q,r € Z such that
u=qu+rand0<r<|vl.
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7. Proof of Theorem (2).

| 2m
Let m be a positive integer. Write 6, = —. Define w,, = cos(6y,) + sin(0,).
n

(a) By De Moivre’s Theorem, (wy,)" = (cos(nfy) + isin(nbdy,)) = cos(2m) + isin(2m) = 1.
(b) i For each k =0,1,2,--- ,n — 1, we have (w,*)" = (wa")f = 1" =1.
- ii. Let ¢ be a complex number. Suppose ¢ is oh n=th (ot o unify Thew =1,
[We want to deduce that ¢ = wnr for some r € [[O, n—1].]
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8. Corollary (3).

27
Let n be a positive integer. Write 6,, = —. Define w,, = cos(6,,) + i sin(6,).
n

The polynomial 2" — 1 with indeterminate z is completely factorized as

1=z Dz —w)(z—w?) ..o (2 —w," ).

Proof. Exercise. (Apply Factor Theorem.)
Remark. In fact, the polynomial z" — 1 can be factorized as a product of finitely many
quadratic polynomials with real coeflicients

2* —2zcos(0,) +1, 2 —2zcos(20,) +1, 2°—2zcos(30,) +1,---

and the linear polynomial z—1 and, when n is even, also together with the linear polynomial

z + 1. (The argument starts with the observation that w, ™ = t@,. Why? How?)



9.

10.

11.

Definition.

Let n be a positive integer. Let w,( be complex numbers. ( is said to be an n-th root
of wif (" = w.

Remark. ( is an n-th root of w iff ( is a root of the polynomial z" — w in the complex

numbers.

Lemma (4).

Let n be a positive integer. Let w be a non-zero complex number. Suppose @ is an argument

for w.
Then ¢ = {/|wl|(cos (¢/n) +isin (¢/n)) is an n-th root of w.
Proof.  Exercise. (Apply De Moivre’s Theorem.)

Theorem (5).
Let n be a positive integer. Write 0,, = 2 /n. Define w,, = cos(6,,) + isin(6,).
Let w be a non-zero complex number, and ( be an n-th root of w in the complex numbers.

The n-th roots of w are the n complex numbers given by C, Cwy,, Cwp?, -+, Cwp L.



Remark. How to visualize these n numbers in terms of plane geometry?

They are the n vertices of the regular n-sided polygon inscribed in the circle with centre 0
and radius {/|w| in the Argand plane, with one vertex at the point ¢.

e Cubic roots:

imaginary axis

R w = |w|(cos(i) + isin(p))

Cws3

¢ = Y/wl(cos(ew/3) + isin(p/3))

—> real axis




e (Quintic roots:

imaginary axis

A w = |w|(cos(ip) + isin(p))

¢ = Y/Twl(cos(p/5) + isin(p/5))

> real axis
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12. Proof of Theorem (5).

27
Let n be a positive integer. Write #,, = —. Define w,, = cos(6,,) + i sin(6,,).
n

Let w be a non-zero complex number, and ¢ be an n-th root of w in the complex numbers.

« We have (" = w.
For each n = 0,1,2,--- ,n — 1, we have (w,”)" = 1.
Then (Cw,")" = (Mw,")* =1-1F = 1.

« Let p be a complex number. Suppose p is an n-th root of w.

Then p" = w. We have <B> P _Y_
G ¢"w

Then £ is an n-th root of unity.

Therefore there exists some » =0,1,2,--- ,n — 1 such that P Wy, .

Q

For the same r, we have p = (w,,.



13. Corollary (6).

2m
Let n be a positive integer. Write 6,, = —. Define w,, = cos(6,,) + i sin(6,).
n
Let w be a non-zero complex number, and ( be an n-th root of w in the complex numbers.

The polynomial 2" — w with indeterminate z is completely factorized as

2w = (2= (2= Cwp)(z = Cwp?) - .o (2 = Cw," ).

Proof.  Exercise. (Apply Factor Theorem.)



