
1. Undefined notions: ‘set’, ‘belong to’, ‘element’.
Unexplained statements which have the same meaning:
• ‘x belongs to the set A’.
• ‘x is an element of A’.
• ‘A contains x as an element’.
At this level we allow heuristics to take over.

Short-hand for ‘x is an element of A’:

‘x ∈ A’.

Short-hand for ‘x is not an element of A’:

‘x /∈ A’.

Everything else in set language is defined in terms of these notions.
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4. Method of Specification.
Many a set cannot be presented as a list, because it is not ‘small’.
Even though a set may be presented as an list, for one reason or other we may choose
not to do so.
Examples:
1. Consider the collection

‘0, 1, 4, 9, 16, 25, 36, · · · ’.
Is it apparent that it refers to the collection of all square integers?
But why can’t it be understood as the collection of 0, 1, 4, 9, 16, 25 and the integers
no less than 36?

2. Consider the collection
‘1, 2, 3, 4, · · · ; 1

2
,
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,
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2
,
7

2
, · · · ; 1

3
,
2

3
,
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3
,
5

3
, · · · ; ...’

Is it apparent that it refers to the collection of all rational numbers? Or is it not?
Can you conceive a better list than this one?
Or is it desirable to describe the collection of all positive rational numbers in this
way?
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When it is impossible or undesirable to present a set by exhaustively listing every
element of the set, we may try the Method of Specification.
In such a set presented witht the Method of Specification, its elements are:
• those objects, and those alone, which turn a predicate ‘used for describing that

set’ into a true statement.

Recall:
• A predicate with variables x, y, z, · · · is a statement ‘modulo’ the ambigu-

ity of possibly one or several variables x, y, z, · · · . Provided we have specified
x, y, z, · · · in such a predicate, it becomes a statement, for which it makes sense
to say it is true or false.
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(g) When there are many solutions for a given equation, the method of specification
may be useful in the presentation of all solutions in the form of a ‘solution set’.
What is the set of all real solutions of the equation sin(x) = 0 with unknown x?
• {nπ | n ∈ Z},
• {x ∈ R : x = nπ for some n ∈ Z}.
Remark. This is another way to ask for the

‘general solution of the equation sin(x) = 0 with unknown x in R’.
When we give the answer as

‘x = nπ where n is an arbitrary integer’,
what we actually mean is:

‘x = α is a real solution of this equation in R iff (α = nπ for some n ∈ Z).’

(g’) What is the set of all real solutions of the equation sin(x) =
1

2
with unknown x?

•
{
nπ + (−1)n · π

6

∣∣∣ n ∈ Z

}
,

•
{
x ∈ R : x = nπ + (−1)n · π

6
for some n ∈ Z

}
.
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(h) What is the set of all real solutions of the system of equation

(S) :


x1 − 5x2 + 3x3 = 1

2x1 − 4x2 + x3 = 0

x1 + x2 − 2x3 = −1

with unknown x1, x2, x3 in R?

•


 −2/3 + (7/6)t

−1/3 + (5/6)t

t


∣∣∣∣∣∣∣ t ∈ R

,

•


 x1

x2

x3


∣∣∣∣∣∣∣

There exists some t ∈ R such that
x1 = −2

3
+
7

6
t and x2 = −1

3
+
5

6
t and x3 = t

.

Remark. What we are saying, without using the jargon of set language, is that

‘

 x1

x2

x3

 is a solution of the system (S) iff there exists some t ∈ R such that

x1 = −2

3
+
7

6
t and x2 = −1

3
+
5

6
t and x3 = t.’
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(h’) The method of specification is used extensively in constructions in linear algebra.
Below are the simplest examples:
• Let H be a (m× n)-matrix with real entries.

The null space of H is
{x ∈ Rn : Hx = 0.}.

• Let H be a (m× n)-matrix with real entries.
The column space of H is{

y ∈ Rm :
There exists some x ∈ Rn

such that y = Hx.

}
.

• Let V be a subspace of Rn.
The orthogonal complement of V is

{y ∈ Rn : ⟨x,y⟩ = 0 for any x ∈ V.}.

Each of them can be generalized in a natural way with the help of notion of linear
transformation.
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(i) What is the set {x | x ̸= x}?
This is the empty set.
Reason?

Warning. We can formally construct, using the method of specification, the objects

{x | x = x}, {x | x /∈ x}

We would expect these objects to be sets. However, it will turn out that they
cannot be ‘reasonably regarded as sets’, if we are to insist that all sets are to obey
certain laws which look natural and which govern their behaviour.
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6. Definitions of the basic set operations, with the help of the Method
of Specification.
Let A,B be sets.

(a) The intersection of the sets A,B is defined to be the set

{x | x ∈ A and x ∈ B}.

(b) The union of the sets A,B is defined to be the set

{x | x ∈ A or x ∈ B}.

(c) The complement of the set B in the set A is defined to be the set

{x | x ∈ A and x /∈ B}.

(d) The symmetric difference of the sets A,B is defined to be the set

(A\B) ∪ (B\A).

They are denoted by A ∩B, A ∪B, A\B, A△B respectively.
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7. Formal definition of the notions of ‘set equality’, ‘subset relation’.
Recall: any two sets A,B are equal to each other as sets exactly when

‘each of A,B contains as its elements every element of the other’.
Same as the above, but more clumsy:

‘every element of A is an element of B and every element of B is an element of A’.
Formal definition for the notion of ‘set equality’:
• Let A,B be sets. We say A is equal to B if both statements (†), (‡) hold:
(†) For any object x, [if (x ∈ A) then (x ∈ B)].
(‡) For any object y, [if (y ∈ B) then (y ∈ A)].
We write A = B.

Formal and clumsy though it looks, it is best to work with this definition in calcula-
tions or proofs, because its logical content has been spelt out explicitly.

Formal definition for the notion of ‘subset relation’:
• Let A,B be sets. We say A is a subset of B if the statement (†) holds:
(†) For any object x, [if (x ∈ A) then (x ∈ B)].
We write A ⊂ B (or B ⊃ A).
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8. Definition.
Let A be a set. The power set of the set A is defined to be the set

{S | S is a subset of A}.

It is denoted by P(A).
Remark. By definition, S ∈ P(A) iff S ⊂ A.

9. Example (1).

A =? Elements of A? Subsets of A?
Elements of P(A)? P(A) =?

∅
{0}
{0, 1}

{0, 1, 2}

{∅}
P(∅)
P({∅})

P({{∅}})
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Remarks.
(1) ∅, {∅} are different objects.

(2) In general, when A has exactly N elements, P(A) will have exactly
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Example (2).
(a) What is P(P(∅)) explicitly?

(b) What is P(P({∅})) explicitly?

(c) What is P(P({{∅}})) explicitly?
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10. Properties of the basic set operations.
Theorem (I). The following statements hold:

(1) Let A be a set. A ⊂ A.
(2) Let A,B be sets. A = B iff [(A ⊂ B) and (B ⊂ A)].
(3) Let A,B,C be sets. Suppose A ⊂ B and B ⊂ C. Then A ⊂ C.
Theorem (II). Let A,B be sets. The following statements hold:

(1) A ∩B ⊂ A.
(2) A ∩B ⊂ B.
(3) A\B ⊂ A.

(4) A ⊂ A ∪B.
(5) B ⊂ A ∪B.

Theorem (III). Let A be a set. The following statements hold:

(1) ∅ ⊂ A.
(2) A ∩ ∅ = ∅.
(3) A ∪ ∅ = A.
(4) A\∅ = A.

(5) ∅\A = ∅.
(6) A△∅ = A.
(7) A△A = ∅.
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Theorem (IV). The following statements hold:
(1) Let A,B, S be sets. Suppose S ⊂ A and S ⊂ B. Then S ⊂ A ∩B.
(2) Let A,B, S be sets. Suppose S ⊂ A or S ⊂ B. Then S ⊂ A ∪B.
(3) Let A,B, T be sets. Suppose A ⊂ T and B ⊂ T . Then A ∪B ⊂ T .
(4) Let A,B, T be sets. Suppose A ⊂ T or B ⊂ T . Then A ∩B ⊂ T .
Theorem (V). Let A,B,C be sets. The following statements hold:

(1) A ∩ A = A.
(2) A ∩B = B ∩ A.
(3) (A ∩B) ∩ C = A ∩ (B ∩ C).
(4) (A ∩B)∪C=(A ∪ C)∩(B ∪ C).
(5) (A ∩B)\C = (A\C) ∩ (B\C).
(6) A\(B ∩ C) = (A\B) ∪ (A\C).
(7) A△B = (A ∪B)\(A ∩B).
(8) A△B = B△A.
(9) (A△B)△C = A△(B△C).

(1’) A ∪ A = A.
(2’) A ∪B = B ∪ A.
(3’) (A ∪B) ∪ C = A ∪ (B ∪ C).
(4’) (A ∪B)∩C=(A ∩ C)∪(B ∩ C).
(5’) (A ∪B)\C = (A\C) ∪ (B\C).
(6’) A\(B ∪ C) = (A\B) ∩ (A\C).
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