




















8. Theorem (4). (Geometric interpretation of multiplication by real num-
bers.)
Let z be a non-zero complex number, and c be a real number.

(a) Suppose c > 0. Then cz is the complex number on the same half line starting from 0

and joining z so that the distance between 0 and cz is c|z|.
Picture in the scenario ‘c > 1’

real axis

imaginary axis

0

z
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Picture in the scenario ‘0 < c < 1’
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(b) Suppose c < 0. Then cz is the complex number on the same half line starting from 0

and joining −z so that the distance between 0 and cz is c|z|.
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15. Theorem (9). (Roots of quadratic polynomials with complex coefficients.)
Let a, b, c be complex numbers, with a ̸= 0. Let α be a number. Let f (z) be the quadratic
polynomial given by f (z) = az2 + bz + c.

(a) Suppose α is a root of f (z). Let β = −b/a− α. Then the statements below hold:

i. f (z)=a(z−α)(z−β)

as polynomials.
ii. β is a root of f (z).
iii. αβ = c/a.

(b) Define ∆f = b2 − 4ac. We call ∆f the discriminant of the polynomial f (z). Then the
statements below hold:

i. f (z) = a

[(
z +

b

2a

)2

− ∆f

4a2

]
as polynomials.

ii. Suppose ∆f ̸= 0. Suppose σ is a square root of ∆f/(4a
2). Define α± = −b/2a ± σ

respectively. Then f (z) has two distinct roots amongst the complex numbers, namely
α+, α−, and f (z) is factorized as f (z) = a(z − α+)(z − α−).

iii. Now suppose ∆f = 0 instead. Then f (z) has a repeated root, namely, −b/2a, amongst
the complex numbers, and f (z) is factorized as f (z) = a(z + b/2a)2.
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Remark.
What the above result says is that each quadratic polynomial with complex coefficients
f (z) has a pair of roots and ‘factorizes into linear polynomials’.
Moreover, if the polynomial f (z) is given by f (z) = az2 + bz + c and the pair of roots

concerned are α, β, then α + β = −b

a
and αβ =

c

a
.

Furthermore, regarding the quadratic equation

az2 + bz + c = 0 —— (⋆)

with unknown x, there are exactly two mutually exclusive possibilities:

(1) Suppose ∆f ̸= 0. Then the equation (⋆) has exactly two distinct solutions amongst the
complex numbers.

(2) Suppose ∆f = 0. Then the equation (⋆) has exactly one repeated solution amongst the
complex numbers.

In any case, the equation (⋆) has at least one solution amongst the complex numbers.
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16. Appendix 1: Complex numbers and polynomials.
Theorem (9) is significant in two ways:

(a) This result for quadratic polynomials is a ‘baby case’ of the Fundamental Theorem
of Algebra, first proved by Gauss, which says:
• Every non-constant polynomial with coefficients in complex numbers has at least one

root amongst the complex numbers.
In fact Gauss gave several proofs for this result.

(b) We can express all the roots of every quadratic polynomial with coefficients in complex
numbers in terms of its coefficients with the help of the operations +,−,×,÷, and with
the taking of (square) roots.
So it is natural to ask whether we can do the same thing for cubic polynomials, quartic
polynomials, quintic polynomials et cetera.
Answer:
Yes for cubic polynomials and quartic polynomials.
No in general for higher-degree polynomials.
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17. Appendix 2: linear algebra done with complex numbers.
Everything in your beginning linear algebra course which involves real numbers and ad-
dition, subtraction, multiplication and division for real numbers alone can be adapted to
complex numbers.

(a) Gaussian elimination can be adapted for solving systems of linear equations with complex
given’s and complex unknowns.

(b) General results on systems of linear equations with real given’s and real unknowns can
be adapted as results on systems of linear equations with complex given’s and complex
unknowns.

(c) The rules of operations which apply to matrices, column vectors, and determinants with
real entries can be adapted to matrices, column vectors and determinants with complex
entries.

(d) The notions of row operations, reduced row-echelon forms, non-singularity, and invert-
ibility, matrix inverses can adapted.
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(e) Subspaces of Cn (over C) are defined in the same manner as subspaces of Rn (over R):
• Suppose V is a non-empty subset of Cn. Then V is said to form a subspace of Cn over
C if, for any α, β ∈ C, for any x,y ∈ V , αx + βy ∈ V .

(f) The notions of null space, column space can be adapted by changing the word ‘real’ to
the word ‘complex’ in the respective definitions.
Let A be an (m× n)-matrix with complex entries.
i. The null space of A is defined to be the set {x ∈ Cn : Ax = 0}.

ii. The column space of A is defined to be the set
{

y ∈ Cm :
There exists some x ∈ Cn

such that y = Ax

}
.
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(g) The notions of linear combination, span, linear dependence/independence, basis can be
adapted by changing the word ‘real’ to the word ‘complex’ in the respective definitions.
Let u1,u2, · · · ,uk,v ∈ Cn.
i. v is said to be a linear combination of u1,u2, · · · ,uk if there exist some α1, α2, · · · , αk ∈
C such that v = α1u1 + α2u2 + · · · + αkuk.

ii. The span of u1,u2, · · · ,uk is defined to be the set
{

v ∈ Cn :
v is a linear combination
of u1,u2, · · · ,uk.

}
.

iii. u1,u2, · · · ,uk are said to be linear dependent over C if there exist some α1, α2, · · · , αk ∈
C, not all zero, such that α1u1 + α2u2 + · · · + αkuk = 0.

iv. u1,u2, · · · ,uk are said to be linear independent over C if for any α1, α2, · · · , αk ∈ C,
if α1u1 + α2u2 + · · · + αkuk = 0 then α1 = α2 = · · · = αk = 0.

v. Let V be a subspace of Cn. Suppose u1,u2, · · · ,uk ∈ V .
u1,u2, · · · ,uk is said to constitute a basis for V if the span of u1,u2, · · · ,uk is V

and u1,u2, · · · ,uk are linear independent over C.
All results formulated in terms of these concepts can be adapted by changing the word
‘real’ to the word ‘complex’ in the statements for the results.
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