1. To demonstrate that a statement is true, we sometimes proceed as described in (1) or (2):

(1) In case the statement is ‘very simple’, with no apparent ‘assumption part” and ‘conclusion
part’, we start by supposing the statement did not hold true.

Then we logically deduce something ‘ridiculously wrong’

Hence we declare that the statement under consideration has to hold true in the first
place.

(2) In case the statement is a ‘conditional’, we start by supposing the assumption in the
statement holds true and the conclusion did not hold true.

Then we logically deduce something ‘ridiculously wrong’

Hence we declare that the conclusion of the statement has to hold true under the assump-
tion of the statement.

This method of proof is called proof-by-contradiction.
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(I) 7 is said to be a rational number if oo s

there exist some m,n € Z such tbat@and (m = np.

(1) r is said to be an irrational number if r is not a rational number.

2. Let pe Z\{—1,0,1}.
p is called a prime number if p is divisible by no integer other than 1, -1, p, —p.



3. Statement (A).
Suppose a, b are rational numbers and b # 0. Then a + bv/2 is an irrational number.

Proof of Statement (A), with proof-by-contradiction argument?

e Tacitly assumed results (since school days):
(ATT) V/2 is an irrational number.

(AT2) Let r, s be rational numbers. r + s, — s,rs are rational numbers.

: r. :
Moreover, if s # 0 then — is a rational number.
S
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Suppose a, b are rational numbers and b # 0. Then a + b\/2 is an irrational number.

Proof of Statement (A), with proof-by-contradiction argument.
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4. Statement (B).
V2 is an irrational number.

Proof of Statement (B), with proof-by-contradiction argument?

e Tacitly assumed result (known as Euclid’s Lemma) for the purpose of this example:

(EL) Let h, k € Z, and p be a prime number.
Suppose hk is divisible by p.
Then at least one of h, k is divisible by p.
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Proof of Statement (B), with proof-by-contradiction argument.

Statement (B).

V2 is an irrational number.
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Proof of Statement (B), with proof-by-contradiction argument.
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Statement (B).

V2 is an irrational number.
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5. Statement (C).

Let m,n € Z. Suppose 0 < |m| < |n|. Then m is not divisible by n.

Proof of Statement (C), with proof-by-contradiction argument.
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