1. Definition. (Absolute value of a real number.)

Let r be a real number.

The absolute value of r, which is denoted by |r|, is the non-negative real number defined by

$$|r| = \begin{cases} r & \text{if } r \ge 0\\ -r & \text{if } r < 0 \end{cases}$$

Remarks.

- (a) In a less formal manner we may refer to |r| is the **magnitude** of the real number r.
- (b) This is the geometric interpretation of the definition: |r| is the distance between the point identified as 0 and the point identified as r on the real line.

Lemma (1).

Let $r \in \mathbb{R}$. The statements below hold:

(a) $r \ge 0$ iff |r| = r. (b) $r \le 0$ iff |r| = -r. (c) r = 0 iff |r| = 0. (d) $-|r| \le r \le |r|$.

Proof. Exercise in word game on the definition and the word *iff*.

2. Lemma (2). (How to 'remove' the absolute value symbol through algebraic means?)

Let $r \in \mathbb{R}$. The statements below hold: (a) $|r|^2 = r^2$.

Remark. What is the relevance of this result? We give one example: whenever we obtain in a calculation the expression $|'blah-blah'|^2$, we may replace it by the expression $('blah-blah')^2$, which may be easier to handle. **Proof.** Let $r \in \mathbb{R}$.

(b) $|r| = \sqrt{r^2}$.

(a) We have $r \ge 0$ or r < 0.

(Case 1.) Suppose $r \ge 0$. Then |r| = r. Therefore $|r|^2 = r^2$.

(Case 2.) Suppose r < 0. Then |r| = -r. Therefore $|r|^2 = (-r)^2 = r^2$.

Hence, in any case, $|r|^2 = r^2$.

(b) We have verified that $|r|^2 = r^2$. Since $|r| \ge 0$, we have $|r| = \sqrt{|r|^2} = \sqrt{r^2}$.

3. Lemma (3). (Absolute value and products.)

Let $s, t \in \mathbb{R}$. The equality |st| = |s||t| holds. **Proof.** Let $s, t \in \mathbb{R}$. We have $|st|^2 = (st)^2 = s^2t^2 = |s|^2|t|^2 = (|s||t|)^2$. Then |st| = |s||t|. (Why?)

4. Lemma (4). (Basic inequalities concerned with absolute value.)

Let $r, c \in \mathbb{R}$. Suppose $c \ge 0$. Then the statements below hold:

(a) $|r| \le c$ iff $-c \le r \le c$. (b) |r| < c iff -c < r < c. (c) $|r| \ge c$ iff $(r \le -c \text{ or } r \ge c)$. (c) $|r| \ge c$ iff $(r \le -c \text{ or } r \ge c)$. (c) $|r| \ge c$ iff $(r \le -c \text{ or } r \ge c)$.

Proof. Exercise.

5. Definition. (Absolute value function.)

The function from \mathbb{R} to \mathbb{R} defined by assigning each real number to its absolute value is called the **absolute value function**.

Remark.

In symbols we may denote this function by $|\cdot|$, and express its 'formula of definition' as ' $x \mapsto |x|$ for each $x \in \mathbb{R}$ ', or equivalently as

$$x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

We may also express the 'formula of definition' of the function $|\cdot|$ as ' $|x| = \sqrt{x^2}$ for any $x \in \mathbb{R}$ '.

6. Theorem (5). (Triangle Inequality on the real line.)

Suppose u, v are real numbers. Then $|u + v| \le |u| + |v|$. Equality holds iff $uv \ge 0$. **Proof.**

Suppose u, v are real numbers.

Then $(|u|+|v|)^2 - |u+v|^2 = (|u|+|v|)^2 - (u+v)^2 = (|u|^2 + |v|^2 + 2|u||v|) - (u^2 + v^2 + 2uv) = 2(|uv| - uv).$ (Why?)

- (a) We have $uv \le |uv|$. Then $(|u| + |v|)^2 |u + v|^2 \ge 0$. Therefore $|u + v|^2 \le (|u| + |v|)^2$. Since $|u + v| \ge 0$ and $|u| + |v| \ge 0$, we have $|u + v| \le |u| + |v|$.
- (b) i. Suppose $uv \ge 0$. Then |uv| = uv. Therefore $(|u| + |v|)^2 |u + v|^2 = 0$. Hence |u + v| = |u| + |v|. ii. Suppose |u + v| = |u| + |v|. Then $(|u| + |v|)^2 - |u + v|^2 = 0$. Therefore |uv| = uv. Hence $uv \ge 0$.

Remark.

An alternative argument for this result starts in this way:

Suppose u, v are real numbers. Then u, v are both non-negative, or u, v are both non-positive, or (one of u, v is non-negative and the other is non-positive).

Now argue 'case by case'.

Corollary (6). (Corollary to Triangle Inequality on the real line.)

Suppose s, t are real numbers. Then $||s| - |t|| \le |s - t|$. Equality holds iff $st \ge 0$.

7. Appendix: Triangle Inequality on the plane.

Theorem (5) can be regarded as a special case of Theorem (7). (There are 'higher-dimensional analogues' of this result.)

Theorem (7). (Triangle Inequality on the plane.)

Suppose u, v, s, t are real numbers. Then $\sqrt{(u+s)^2 + (v+t)^2} \le \sqrt{u^2 + v^2} + \sqrt{s^2 + t^2}$. Equality holds iff $(ut = vs and us \ge 0 and vt \ge 0)$.

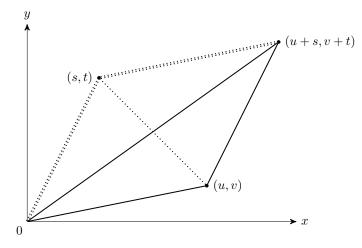
Remark. This is the geometric interpretation of Theorem (8) on the coordinate plane:

Consider the parallelogram whose vertices are (0, 0), (u, v), (s, t), (u + s, v + t).

The line segment joining (0,0), (u,v) has length $\sqrt{u^2 + v^2}$. The line segment joining (u,v), (u+s,v+t), which is the same as the distance between (0,0), (s,t), has length $\sqrt{s^2 + t^2}$. The line segment joining (0,0), (u+s,v+t) is of length $\sqrt{(u+s)^2 + (v+t)^2}$.

The sum of the first two lengths is expected to be no shorter than the last. But this is expected: the three line segments are the three sides of the triangle with vertices (0,0), (u,v), (u+s,v+t).

Equality holds exactly when the three points (u, v), (s, t), (u + s, v + t) are on the same 'half-line' with endpoint at the origin (0, 0).



Proof. Postponed. (The 'classical method' is to first prove the *Cauchy-Schwarz Inequality*, of which Lemma (4) may be regarded as a special case, and then obtain the Triangle Inequality as a corollary.)