
1. Tacitly assumed properties of the real number system since school-days:
(a) i. Let x, y ∈ R. x + y ∈ R and x− y ∈ R and xy ∈ R.

ii. Let x, y ∈ R. Suppose y ̸= 0. Then x/y ∈ R.

(b) i. Let x ∈ R. Exactly one of ‘x < 0’, ‘x = 0’, ‘x > 0’ is true.
ii. Let x, y ∈ R. Suppose x > 0 and y > 0. Then x + y > 0 and xy > 0 and
x/y > 0.

iii. Let x, y ∈ R. Suppose xy > 0. Then (x > 0 and y > 0) or (x < 0 and y < 0).

(c) For each positive real number x, for each integer n ≥ 2, there exists some positive
real number r such that x = rn.
We denote this r by n

√
x and call it the n-th real root of x.
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Statement (A1).
Let x, y be positive real numbers. Suppose x2 > y2. Then x > y.

Very formal proof of Statement (A1).
I. Let x, y be positive real numbers. [Assumption.]
II. Suppose x2 > y2. [Assumption.]
III. x2 − y2 > 0. [II.]
IV. x2 − y2 = (x− y)(x + y). [Properties of the reals.]
V. (x− y)(x + y) > 0. [III, IV.]
VI (x − y > 0 and x + y > 0) or (x − y < 0 and x + y < 0). [V, properties of
the reals.]
VII. x + y > 0 [I.]
VIII. x− y > 0. [VI, VII.]
IX. x > y. [VIII.]
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3. Statement (A2).
Let x, y be positive real numbers. Suppose x2 ≥ y2. Then x ≥ y.

Proof of Statement (A2).
Let x, y be positive real numbers. Suppose x2 ≥ y2.
Then x2 − y2 ≥ 0.
Note that x2 − y2 = (x− y)(x + y).
Then (x− y)(x + y) ≥ 0.

Since x > 0 and y > 0, we have x + y > 0. Therefore 1

x + y
> 0 also.

Then x− y = [(x− y)(x + y)] · 1

x + y
≥ 0.

Therefore x ≥ y.
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Statement (B).

Suppose x, y are positive real numbers. Then x + y

2
≥ √

xy.

Very formal proof of Statement (B).
I. Suppose x, y are positive real numbers. [Assumption.]
II.

√
x,
√
y are well-defined as real numbers. [I.]

III.
√
x−√

y is well-defined as a real number. [II.]
IV. xy is a positive real number. [I, properties of the reals.]
V. √xy is well-defined as a real number. [IV.]
VI.

√
x
√
y =

√
xy. [II, V, properties of the reals.]

VII. (
√
x)2 = x. [I, II.]

VIII. (√y)2 = y. [I, II.]
IX. (

√
x−√

y)2 = x− 2
√
xy + y. [VI, VII, VIII.]

X.(
√
x−√

y)2 ≥ 0. [III, properties of the reals.]
XI. x− 2

√
xy + y ≥ 0. [IX, X.]

XII. x + y

2
≥ √

xy. [XI.]
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Very formal proof of Statement (A’).

I. Let x, y be non-negative real num-
bers. [Assumption.]

II. Suppose x2 ≥ y2. [Assumption.]

III. x2 − y2 ≥ 0. [II.]

IV. x2−y2 = (x−y)(x+y). [Prop-
erties of the reals.]

V. (x− y)(x + y) ≥ 0. [III, IV.]

VI (x − y ≥ 0 and x + y ≥ 0) or
(x − y ≤ 0 and x + y ≤ 0). [V,
properties of the reals.]

VII. x + y ≥ 0. [I.]

VIII. x+y > 0 or x+y = 0. [VII.]
IX.

IXi. Suppose x + y > 0. [One of
the possibilities in VIII.]
IXii. x− y ≥ 0. [VI, IXi.]
IXiii. x ≥ y. [IXii.]

X.
Xi. Suppose x + y = 0. [One of
the possibilities in VIII.]
Xii. x = y = 0. [I, Xi.]
Xiii. x ≥ y. [Xii.]

XI. x ≥ y. [VIII, IX, X.]
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Remark. Below is a more general version of Bernoulli’s Inequality:
Let µ be a rational number, and β be a real number.
Suppose µ ̸= 0 and µ ̸= 1, and β > −1.
The statements below hold:

(1) Suppose µ < 0 or µ > 1. Then (1 + β)µ ≥ 1 + µβ.
(2) Suppose 0 < µ < 1. Then (1 + β)µ ≤ 1 + µβ.
(3) In each of (1), (2), equality holds iff β = 0.
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8. Statement (E). (A ‘baby version’ of the Cauchy-Schwarz Inequality.)
Suppose x, y are real numbers. Then x2 + y2 ≥ 2xy. Equality holds iff x = y.

Proof of statement (E).
Suppose x, y are real numbers.
[Preparation. Study the difference ‘L.H.S. minus R.H.S.’ in the desired inequality.]
We have (x2 + y2)− 2xy = (x− y)2.

(a) Since x, y are real, x− y is real.
Then (x− y)2 ≥ 0. Therefore x2 + y2 ≥ 2xy.

(b) i. Suppose x = y.
Then (x2 + y2)− 2xy = (x− y)2 = (x− x)2 = 0. Therefore x2 + y2 = 2xy.

ii. Suppose x2 + y2 = 2xy.
Then 0 = (x2 + y2)− 2xy = (x− y)2. Therefore x− y = 0. Hence x = y.

The result follows.
Remark. Strictly speaking, Statement (E) is not just about an inequality.
It is about a non-strict inequality together with the ‘necessary and sufficient condi-
tions for the equality to hold’.
This kind of statements is common amongst results concerned with inequalities. (For
instance, see the more general version of Bernoulli’s Inequality.)
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9. We need expand the list of ‘rules as regards inequalities’ which we are tacitly assuming
since school-days!
(1) Let x, y ∈ R. y − x > 0 iff x < y.
(1∗) Let x, y ∈ R. y − x ≥ 0 iff x ≤ y.
(2) Let x, y, z ∈ R. If x < y and y < z then x < z.
(2∗) Let x, y, z ∈ R. The statements below hold:
(2∗a) x ≤ x.
(2∗b) If (x ≤ y and y ≤ x) then x = y.
(2∗c) If (x ≤ y and y ≤ z) then x ≤ z.
(3) Let x ∈ R. Exactly one of ‘x < 0’, ‘x = 0’, ‘x > 0’ is true.
(4) Let x, y ∈ R. Suppose x < y. Then the statements below hold:
(4a) For any u ∈ R, x + u < y + u and x− u < y − u.
(4b) For any u ∈ R, if u > 0 then xu < yu and x/u < y/u.
(4c) For any u ∈ R, if u < 0 then xu > yu and x/u > y/u.

(4∗) Let x, y ∈ R. Suppose x ≤ y. Then the statements below hold:
(4∗a) For any u ∈ R, x + u ≤ y + u and x− u ≤ y − u.
(4∗b) For any u ∈ R, if u > 0 then xu ≤ yu and x/u ≤ y/u.
(4∗c) For any u ∈ R, if u < 0 then xu ≥ yu and x/u ≥ y/u.
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... More rules:

(5) Let x, y, u, v ∈ R. Suppose x < y and u < v. The statements below hold:
(5a) x + u < y + v.
(5b) Further suppose x > 0, y > 0, u > 0 and v > 0. Then xu < yv.

(5∗) Let x, y, u, v ∈ R. Suppose x ≤ y and u ≤ v.
(5∗a) x + u ≤ y + v.
(5∗b) Further suppose x ≥ 0, y ≥ 0, u ≥ 0 and v ≥ 0. Then xu ≤ yv.
(6) Let x, y ∈ R. The statements below hold:
(6a) Suppose xy > 0. Then (x > 0 and y > 0) or (x < 0 and y < 0).
(6b) Suppose xy < 0. Then (x > 0 and y < 0) or (x < 0 and y > 0).

(6∗) Let x, y ∈ R. The statements below hold:
(6∗a) Suppose xy ≥ 0. Then (x ≥ 0 and y ≥ 0) or (x ≤ 0 and y ≤ 0).
(6∗b) Suppose xy ≤ 0. Then (x ≥ 0 and y ≤ 0) or (x ≤ 0 and y ≥ 0).
(7) Let x ∈ R. Suppose x ̸= 0. Then x2 > 0.
(7∗) Let x ∈ R. x2 ≥ 0.
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