MATH1030 Gram-Schmidt orthogonalization process.

1. Recall the definition for the notions of orthonormal set and orthonormal basis from the handout Orthonormal basis
and orthogonal projections.

Let uj,uy,--- ,u, € R™.
(a) We say that uj,us,--- ,uy constitute an orthonormal set in R™ if and only if uj,ug, - - ,uy are pairwise
orthogonal and ||u;|| =1 for each j =1,2--- | k.

(b) Suppose V is a subspace of R™. Then we say that uj,us, -+ ,uy constitute an orthonormal basis for V if
and only if ui,us,--- ,uy constitute an orthonormal set.

Also recall the result (x), which is a part of Theorem (C), as stated below:

Let W be a subspace of R™.
Suppose uj,us, -+ ,uy constitute an orthonormal basis for W.
Suppose z € R™.
Definev € W by v = (z,u1) u; + (z,uz) ug + - - - + (z, ug) uy.
Definey e R" by y =z — v.
Thenz=v+y,andy L s foranysec W.
2. Lemma (G).
Let uj,us, -+ ,ug,z be vectors in R™.
Suppose uj,us, - - ,uy constitute an orthonormal set in R™.
Further suppose z is not a linear combination of uy,us, - -+ , uy.
Definey =z — (z,u;)u; — (z,us) ug — - - - — (z, ug) uy.

Then the statements below hold:
(a) [ly[l # 0.

1
(b) ug,ug,--- ,uy, Wy constitute an orthonormal set in R™.
y
1

(C) Span ({ula ug, - 7uk7z}) = Span ({uh uz, -, Uk, my})

3. Proof of Lemma (G).
Let uy,us, -+ ,ug,z be vectors in R™.
Suppose uj, us,- - ,u; constitute an orthonormal set in R™.
Further suppose z is not a linear combination of uy, us,--- , uy.
Define W = Span ({uy,ug, -+ ,u;}). By definition, uy, ug, - -+ ,u; constitutes an orthonormal basis for W.
Definey =z — (z,u;)u; — (z,uz) ug — - -+ — (z,uy) uy
Define v = (z,u;) u; + (z,uz) us + - - - + (2, uy) ug.

Theny =z —v.

(a) Since z is not a linear combination of uj,us,- - ,ug, we have z # v. Then y # 0. Therefore |y| # 0.

(b) By the result (x),y L s for any s € W.

Note that uj,us, -+ ,u € W.
. 1 1 1
Then for each j =1,2,--- ,n, we have ( —y,u; ) = — (y,u;) = 0. Hence —y L u;.
Il Iyl Iyl
1
It follows that uy,us,--- , ug, Wy constitute an orthonormal set in R™.
y
1 1
(c) By definition, we have —y = —z — <Z’u1>u1 — <Z’u2>uQ R — Muk.
Iyl llyll vl Iyl vl
1
Then each of uj,ug, -+ ,ug, ——y is a linear combination of uy, us, -+, ug,z.
¥l
1
We also have z = ||y|| - (my) +{z,u1)u; + (z,uz) ug + - - - + (z,ug) uy.



1
Then each of ug,ug, -+ ,ug,z is a linear combination of ui, us,--- , ug, my.

1

Iyl

It follows that Span ({uy,ug, - ,ux,z}) = Span ({uy,us, -, ug,

v}

4. Theorem (H). (Existence of orthonormal basis.)

Suppose W is a non-zero subspace of R™. Then W has an orthonormal basis.

Remark. The constructive argument in the proof below, generating an orthonormal basis for W from an (arbi-

trary) basis for W, is referred to as the Gram-Schmidt orthogonalization process.

5. Proof of Theorem (H).

Suppose W is a non-zero subspace of R”. Write dim(W) = k. By assumption, k is between 1 and n.

Pick some basis for W, which is a collection of k vectors, denoted by z1,zo, - - - , Zk.

For each j =1,2,--- , k, define W; = Span ({z1,22,--- ,2;}). Note that dim(WW;) = j, and by definition, z;,; does
not belong to W;.

(a)

Note that z; # 0. Then ||z;|| # 0.

Define u; = mzl.
1

We have [juq|| = 1.

u; and z; are non-zero scalar multiples of each other.

Then Wy = Span ({z1}) = Span ({u1}).

Therefore u; constitutes an orthonormal basis for Wj.

zo does not belong to Wi. Then z5, is not a linear combination of uy.
Define yo = zo — (22, u;) uy.

By Lemma (G), ||y2|| # 0.

Define uy; = 1
[y
By Lemma (G), uy, uy constitute an orthonormal set in R™.

Since Span ({z1}) = Span ({u;}), we have W5 = Span ({z1,22}) = Span ({u1,z2}).
Then Wy = Span ({u1,22}) = Span ({uz, uz}), again by Lemma (G).

Therefore uy, us constitutes an orthonormal basis for Ws.

ToY2:
|

z3 does not belong to Ws5. Then z3 is not a linear combination of uy, us.
Define y3 = z3 — (23, u1) u1 — (z3, u2) ua.
By Lemma (G), |lys]| # 0.

1
Define us =
y3
By Lemma (G), uy, ug, uz constitute an orthonormal set in R™.

ToY3:
|

Since Span ({z1,22}) = Span ({uy,uz}), we have W5 = Span ({21, 22,23}) = Span ({uy,uz,23}).
Then W5 = Span ({u1,us,2z3}) = Span ({u1, us,us}), again by Lemma (G).

Therefore uy, us, us constitutes an orthonormal basis for Wi.

Let ¢ be any one of 2,3, --- , k. Suppose that the vectors y1,y2, - ,y¢—1 and uy, us, - ,uy_1 are successively
defined by
Y2 = Z2— <Z27u1> uj,
1
U2 = 77— ¥2
[yl
y3 = 23— (z3,u1)u; — (z3,Uz) Uy,
1
us = Y3,
[yl
Yi-1 = Zyg—1 — <Ze71,111> u; — <Z£71,u2> Uz — - — <Z£—1,11£72> Uy—2,
1
-1 = - Yei-1,
[ye—1l



and satisfies:
® ||y2|| 7& 07 ||y3H 7£ 05 ceey ||yZ—1|| 7é 07 and

o for each j =2,3,---,¢ — 1, the vectors uy, us,--- ,u; constitute an orthonormal basis for for Wj.
We now note that z, does not belong to W,_1. Then z; is not a linear combination of uy,ug, - ,us_q.
Define y; = zy — (z¢, u1) wy — (z¢, uz) ug — - -+ (¢, Up_1) Up—1 — (Z¢, U2) Ua.

By Lemma (G), ||y¢|| # 0.

1
Define u, = —”yg.

lye
By Lemma (G), uj,us,- - ,up_1, up constitute an orthonormal set in R™.
Since Span ({z1,22, - ,2¢-1}) = Span ({uy,uz, -+ ,us—1}), we have Wy = Span ({z1,22, - ,2¢-1,2¢}) =
Span ({ug,uy, -+ ,up_1,2e}).

Then Wy = Span ({z1,22, - ,2¢-1,2¢}) = Span ({uy,ug, -+ ,up_1,us}), again by Lemma (G).

Therefore uy, us, --- ,uy_1, uy constitutes an orthonormal basis for W,.

Hence W has an orthonormal basis, namely uj, ug,--- , ug.

6. Gram-Schmidt orthogonalization process.
Suppose W is a subspace of R™, and z1, z2, 23, - - , Z constitute a basis for W.

The argument in the proof of Theorem (H) provides an algorithm for an orthonormal basis u,us, -+ ,ug for W,
for which the equality Span ({uy,us,---,u;}) = Span ({z1,22,--- ,2;}) holds for each j =1,2,--- | k:

o Step (1).
We define y; = z;.
o Step (2).
We define yo,ys, - -,y inductively by

(zj,y1) (zj,y2) (zj,y-1) ,
Y =2 — Y1 — yo—---— ———=—"y. 1 foreachj=23,--- k.
S PR ly2[? -1l °7
When written out explicitly, y1,y2, -+ ,¥x are given recursively by:
yr = 73
(Z2,y1)
Y2 = 23— 5 Y1
[yl
(z3,y1) (23,¥2)
ys = 73— y1— Y2
llyl? lly2]?
(Z4,y1) (Z4,y2) (Z4,Y3)
YOO TP T e el
3
_ <Zk7Y1> <Zk7y2> <Zkayk—1>
Ve = Zp— 5 Y1 — S Y2 == oYk
[yl [y2]l [yE-1ll
o Step (3).
1
For each j =1,2,--- ,k, define u; = -—y;.
INAl
For each £ =1,2,--- , k, the vectors uy, ug, - - ,u, constitute an orthonormal basis for Span ({z1,22, - ,2¢}).
In particular, the vectors up, us,- -+ , Uy constitute an orthonormal basis for W.

7. Illustrations on the Gram-Schmidt orthogonalization process.

1 -1 -1
(a)Letzlz 2,Z2: 1 , Z3 = —21.
2 4 1

Take for granted that z, zo, z3 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1,z2,23}) = R3.



1
o Take y; =z;. Then y; = |2|, and [ly1|* = 9.
2

1 1/3
Take uy = ——y;. Then u; = |2/3].
[yl 2/3
o Take y2 =2z — <Z27y;>}’1.
ly1ll
We have (z2,y1) = 9.
-1 9 1 -2
Theny, = | 1| — 9 2| = |-1|, and ||y2]]* = 9.
4 2 2
1 -2/3
Take ug = ——ys. Then us = |—1/3].
[yl 2/3
<Z37Y1> <Z37y2>

P Takeys = - R YT e Y

We have (z3,y1) = —3, (2z3,y2) = 6.
-1 1 -2 2/3

-3 6
Then y3 = |—2| — o> 2| — 9 —1| = [-2/3], and |ys]|®> = 1.
1 2 2 1/3
1 2/3
Take u3 = ——y3. Then uzg = |—2/3].
||Y3H 1/3

up, us, uz constitute an orthonormal basis for W.

Also note that, by construction, Span ({u;}) = Span ({z1}) and Span ({u;,us}) = Span ({z1,22}).
1 1 0

0 |1 !

1 I Z2 - 1 I Z3 - 1 .

0 1 1

Take for granted that z, zo, z3 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1, z2,23}).

1
e Take y; = z;. Then y; = (1) ,and |y1])? = 2.
0
1/v/2
Take u; = L Then u; = 0
YT Ty T yvel
0
o Take yy = 2y — <Z2’y;> 1.
[yl
We have (z2,y1) = 2.
1 1 0
|1 210 |1 2
Thenys = || =5 1| = [o] and Iy2l* =2
1 0 1
0
1
Take uy = ——y5. Then uy = 1/\/5 .
[[y2ll 0
1/v2
e Take y3 =23 — <Z3aYI>y _ <Z3ay2>y2.

1
[ly1]? [[y2l?
We have (z3,y1) =1, (z3,y2) = 2.



0 1 0] [-1/2
1| 10| 21 0 1
Thenys = |1\ =5 7| =3 [o] = | 1/2 | 2nd Ivsl® =3
1 0 1 0
~1/v2
0

1
Take us = ——y3. Then us =
> Tyall ™ T vz
0

uy, us, uz constitute an orthonormal basis for W.
Also note that, by construction, Span ({u;}) = Span ({z1}) and Span ({u;,us}) = Span ({z1,22}).

1 0 1

0 1 1
(C) Letz1: 1 y, Zo = zZ3 — 1l
0 1

2 )
1
Take for granted that z, zo, z3 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1, z2,23}).

1
e Take y; =2z;. Then y; = (1) , and ||Y1||2 =2.
0
1/4/2
Tak L . Th ’
ake u; = ——yi. en u; — .
Iy 1/v2
0
o Take y; = zy — <Z27y;>}’1.
[yl
We have (z2,y1) = 2.
0 1 —1]
1 210 1 2
Then y; = ol 3 1] T |1 ;and [lyzf|* = 4.
1 0 1]
_71/2
1/2
Take uy = ——y5. Then uy =
[yl 1/2
i 1/2
o Take Y3 =23 — <Z3aY;> L= <Z3’y§> 9.
[yl lly=|]
We have (z3,y1) = 2, (2z3,y2) = 2.
1 1 -1 I 1/2
e 210 211 |1/2 5
Then Y3 = 1 - 5 1 - Z 1 — _1/2 9 and ||Y3|| - 1
1 0 1 | 1/2
1/2 i
1 1/2
Take u3 = ——y3. Then uz = .
[yl -1/2
1/2 ]

uy, Ug, u3 constitute an orthonormal basis for .
Also note that, by construction, Span ({u1}) = Span ({z1}) and Span ({u;,us}) = Span ({z1,22}).

1 -2 9 -3

2 6 -2 -1
(d) Letz1: 9 , Zo = 9 , Z3 4 , Zy 3|

4 9 7 9

Take for granted that zi, zo, z3, z4 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1,z2,23,24}) = R*.



e Take y; =2z;. Then y; = ,and |ly1|? = 25.

IS NI N

1/5
1 2/5
Take uy = ——y;. Then u; = .
[yl 2/5
4/5
o Take yy =z — <Z2’y;>Y1-
[yl
We have (z3,y1) = 50.
-2 1 —4
|6 50 12| |2 9
Then yo = o | ~35 2] = | 2| and ||yz||* = 25.
9 4 1
—4/5
2/5
Take uy = ——y2. Then uy = .
[yl —2/5
1/5
<Z3aY1> <Z:37Y2>

e Take Y3 =23 — 2.

y1—
[lyal? ly2l1?
We have (z3,y1) = 25, (z3,y2) = —25.

9 1 —4 4
2| 25 l2| 25| 2| |-2 .
Then y3 = 4| T3 el T2 |2 T s , and |lys||* = 100.
7 4 1 4
2/5
1 ~1/5
Take ug = ——y3. Then ug = .
vl —4/5
2/5
z b z b z b
. Take}’4:Z4*<4y;> 17<4y§>y2—<4y2>y3-
ly1l] vzl [yl
We have (z4,y1) = 25, (z4,y2) = 25, (24,y3) = 50.
-3 1 —4 4 -2
1] 252l 25| 2| 50 |—2| |-4 .
Then y4 = 3l 75 (2] T3 2| T100 -8l T |1 , and |ly4]|* = 25.
9 4 1 4 2
—2/5
1 —4/5
Take uy = ——y4. Then uy =
[|yall 1/5
2/5

uy, Ug, uz, uy constitute an orthonormal basis for W.
Also note that, by construction, Span ({u1}) = Span ({z1}), Span ({u1,u2}) = Span ({z1,22})and Span ({u, uz,us}) =
Span ({z1,22,23}).
8. Gram-Schmidt orthogonalization, presented as QR-decomposition.
Suppose Z is an (n x k)-matrix, with n > k. For each j =1,2,--- , k, the j-th column of Z by z; for.

Suppose z1, 22, Z3, - - - ,Zj, are linearly independent.

1
We define y; = 21, uy = ——y1, and define yo,ys, -+ ,yx inductively by

[yl

(25, 1) (zj,y2) (zj,yj-1) 1 :
Y =12; — 1— yo— - — ————="y, 4, u; = —y; foreachj=2,3,--- k.
S P [y=l” ;-2 ™ N 71 ’
These vectors y1,y2,ys, -,y are well-defined according to the argument for Theorem (H).
Define the matrix @ = [ u; ‘ Uus ‘ ‘ uy ]



For each j =1,2,--- , k, we have

zj = (zjw)ur+(zju)uz+ - +(z;0-1) w1+ [yl -u; + 0w+ + 0, =Q

Define the (n x n)-square matrix R, whose (7, j)-th entry is denoted by 7;; by

<u,»,zj> if ’L<j

rig =9 Iyl i i=j
0 it Q>
[ <u17Zj> 1
<u27zj>

(w12
Il
0

(So, for each j =1,2,--- ,n, the j-th column of R is

Then Z = QR.
This ‘factorization’ of Z into the product QR is called the ‘QR-decomposition’ for Z.
Note that C(Z) = C(Q) and the columns of @ is an orthonormal basis for C(Z).

The matrix R encodes the Gram-Schmidt orthogonalization process from which we obtain the orthonormal set

uy, Us, - -, ug from the linearly independent set z1,zs, - , Zg.

. Illustrations of QR-decomposition.

Refer to Illustrations on the Gram-Schmidt orthogonalization process above. The respective constructions can be
displayed as the ‘factorizations’ below:

1 -1 -1 1/3 —2/3 2/3 3 3 -1
(@ | 2 1 -2 |=12/3 -1/3 -2/3 0 3 2
2 4 1 2/3 2/3 1/3 00 1
11 01 [1/V2 0 -—1/v2]
(b) 01 1| 0 1/vV2 0 ‘f g 1{}2@
L1 1| |1/vV2 0 -1/v2
01 1| | /o 1/v2 é 00 1va
(10 1] [1/vV2 —1/2 —-1/27
o V| [T | v e v
@1 91| V2 1/2  —1/2 0 o0 1
01 1] [ o /2 12 |t
1 -2 9 -3 1/5 —4/5 2/5 —2/5 5 10 5 5
o |26 =2 -1 | 2/5 2/5 -1/5 -4/ 0 5 -5 5
Dy o 4 3|~ 2/5 —2/5 —4/5 1/5 0 0 10 5
4 9 7 9 4/5 1/5 2/5  2/5 00 0 5



