1. Recall the definition for the notions of orthonormal set and orthonormal basis from the

handout Orthonormal basis and orthogonal projections.

Let U, Uy, - , Ui € R"™.
(a) Wesay that uy, ug, - - - , u constitute an orthonormal set in R" if and only ifuy, us, - - - , Uy
are pairwise orthogonal and ||u;|| =1 for each j =1,2--- | k.

(b) Suppose V' is a subspace of R".
Then we say that uj, us, - - - ,u; constitute an orthonormal basis for V' if and only if

up, Uy, - - - , U constitute an orthonormal set.
Also recall the result (%), which is a part of Theorem (C), as stated below:
Let W be a subspace of R".

Suppose uy, Us, - - - , Uy, constitute an orthonormal basis for W'.
Suppose z € R",

Definev € W by v = (z,u;) u; + (z,us) us + - - - + (2, uz,) .
Definey e R" byy =z —v.

Thenz=v+y,andy L s foranys e W.



2. Lemma (G).
Let uy,us, - - - ,ux, z be vectors in R".
Suppose uj, Uy, - - - , U constitute an orthonormal set in R".
Further suppose z Is not a linear combination of uy, Us, -+ - - , Uy.
Definey =z — (z,u;) u; — (z,u) Uy — - - - — (7, Uy) Uy.

Then the statements below hold:
(a) [yl # 0.

(b) uy,uy, - -+, uy, y constitute an orthonormal set in R".

1
(C> Span <{u17 U, - -+, Ug, Z}> — Span ({ulv g, - -+, Ug,

my}>



3. Proof of Lemma (G).

Let uy,uy, - - - ,ui, z be vectors in R".

Suppose up, Uy, - - - , U constitute an orthonormal set in R".

Further suppose z is not a linear combination of uy, uo, - - - , ug.

Define W = Span ({uy,uy,--- ,u;}). By definition, uy,us, - -+ ,u; constitutes an or-

thonormal basis for W.

Definey =z — (z,u;) uy — (z,ug) ug — - - - — (z, u) uy

Define v = (z,u;) u; + (z, us) us + - - - + (z, uy) uy.

Theny =z —v.

(a) Since z is not a linear combination of uy, ug, - -+ , Uy, we have z # v.

Then y # 0.
Therefore ||y|| # 0.



(b) By the result (x), y L s for any s € W.

Note that uy,ug, -+ ,up € W.
1 1
Then for each 7 =1,2,--- ,n, we have <—y, uj> = —(y,u;) =0.
Iy | Iy
1
Hence ——y L u;.
Iy
[t follows that uy,ug, -+, uy, y constitute an orthonormal set in R".

(¢) By definition, we have

1 1
LN (z,U1>u1 B <z,uQ>u2 L (z,uy)
Iy ™yl [y | Iy | (gl
1
Then each of uy,uo, --- ,uy, Wy is a linear combination of uj, uy, - - - , u;, z.
y

We also have z = ||y]|| - ( y) + (z,u;) u; + (z,us) us + - - - + (z, up) uy.

1
Then each of uy,us, - -+ ,u, z is a linear combination of uy, uy, -+ - , U, ——

: y}>.

lyll

It follows that Span ({uy,us, -+ ,u,z}) = Span ({uy,uy, -+, uy,



4. Theorem (H). (Existence of orthonormal basis.)
Suppose W' is a non-zero subspace of R". Then W has an orthonormal basis.
Remark.

The constructive argument in the proot below, generating an orthonormal basis for W from

an (arbitrary) basis for W, is referred to as the Gram-Schmidt orthogonalization process.

5. Proof of Theorem (H).
Suppose W is a non-zero subspace of R". Write dim(W) = k.
By assumption, k is between 1 and n.
Pick some basis for W, which is a collection of & vectors, denoted by z1, zo, - - - , Z}.
For each j =1,2,--- ,k, define W, = Span ({z1, 22, -+ ,2,}).
Note that dim(W;) = j, and by definition, z;,; does not belong to W;.
1

1z
u; and z; are non-zero scalar multiples of each other.

Then Wy = Span ({z1}) = Span ({u}).

Therefore u; constitutes an orthonormal basis for Wj.

(a) Note that z; # 0. Then ||z;|| # 0. Define u; =

z1. We have ||[uy|| = 1.



(b) zo does not belong to Wi. Then 2z, is not a linear combination of u;.
Define yo = z9 — (29, up) uy.
By Lemma (G), [lys] # 0

Define uy = y2. By Lemma (G), uy, uy constitute an orthonormal set in R".

1
el
Since Span ({z;}) = Span ({u;}), we have Wy = Span ({z1,2z2}) = Span ({uy, z2}).

Then Wy = Span ({uy,2z2}) = Span ({u, us}), again by Lemma (G).

Therefore uy, uy constitutes an orthonormal basis for W5s.

(¢) z3 does not belong to Ws. Then z3 is not a linear combination of uy, us.
Define y3 = z3 — (23, u1) u; — (23, U2) us.

By Lemma (G), [[ys|| # 0.
1

HYSH

Since Span ({z1,22}) = Span ({uy,us}), we have
W5 = Span ({z1, 22, 23}) = Span ({uy,uy, z3}).
Then W3 = Span ({uy,us,23}) = Span ({uy, us, us}), again by Lemma (G).

Define us = y3. By Lemma (G), uy, ug, us constitute an orthonormal set in R".

Therefore uy, us, us constitutes an orthonormal basis for Wj.









(d) Let £ be any one of 2,3, --- | k.

Suppose that the vectors y1,ys, -+ ,yr—1 and uy, ug, - - - , uy_1 are successively defined
by
Yo = Zo — (Z2,up) Uy,
1
Uy = Y2,
y2]]
y3 = 23— (z3,u1) u — (23, Uz) Uy,
1
U3 = Y3,
vl
Yi—1 = Zg—1 — (Zy—1,01) Uy — (Zg—1, W) Up — - -+ — (Z¢—1, Up—2) Uy,
1
Uy—1 = Yi—-1,
[ye-1l]

and satisfies:

ol #0, lysll #0, ..., [ye-all #0, and
e foreach j =2,3,---,£—1, the vectors ug, up, - - - , u; constitute an orthonormal basis

for for W;.




We now note that z, does not belong to W,_;.

Then z, is not a linear combination of u, uy, - - -

Define y, = 2y — (z¢, u1) uy — (zg, u2) Uy — - - - (g, Wy_1) W1 — (7y, Uy) Us.

By Lemma (G), [ly| # 0.
1

[lyell

Define uy = y¢. By Lemma (G), uy, uy, - - -

in R".

Since Span ({Z17 Zo, - 7Z£_1}) = Span ({uh Us, - - -

y Up—1.

, Uy_1, uy constitute an orthonormal set

,Uy_1}), we have

, We—1, ZE})-

= Span ({z1,22, """ ,Z¢-1,%¢}) = Span ({ug, uy, - -

Then We = Span ({z1,22, -+ ,Z¢-1,2¢}) = Span ({us,uy, - -

Lemma (G).

Therefore uy, us, - - - , uy_1, uy constitutes an orthonormal basis for W,.

Hence W has an orthonormal basis, namely uy, uo, - - -

y UE.

,Uy_1,Uy}), again by



6. Gram-Schmidt orthogonalization process.
Suppose W is a subspace of R", and z1, zo, z3, - - - , Z; constitute a basis for .
The argument in the proof of Theorem (H) provides an algorithm for an orthonormal basis uy, us, - - - , uy for W, for which
the equality Span ({uj,ug,--- ,u;}) = Span ({z1,22,--- ,2;}) holds for each j =1,2,--- , k:
o Step (1). We define y; = z;.
o Step (2). We define ys,ys3, -,y inductively by

(Zj,y1) (Zj,y2) (Zj,yj-1) .
=7 — — — === —vy. , foreach j=2,3,--- k.
R TP vl ;[P !
When written out explicitly, y1,yo, - ,yi are given recursively by:
Y = 71
. <Z27Y1>
Yo = Z2— 55— Y1
(gl

_ <Z3, Y1> <Z3, Y2>
Y3 = 23 — 5 Y1 — 5 Y2
Nall el

<Z4, Y1> <Z4, Y2> <Z4, Y3>

Y4o = Z4— 1 2 — Y3
[y1][? [y2[[? AR
_ (z1,¥y1) (z1,y2) (Z1, Yi-1)
Yi = Zk — Y1 — Y2~ iy
Nl [yl [N7=
. 1
o Step (3). Foreachj=1,2,--- k, define u; = Wyj.
Y
For each ¢ =1,2,--- |k, the vectors uy, uy, - - , uy constitute an orthonormal basis for Span ({z1, 22, ,2z¢}).

In particular, the vectors uy, uo, - - - , u; constitute an orthonormal basis for WW.



7. Illustrations on the Gram-Schmidt orthogonalization process.

1 -1 -1
(a) Let z; = |2|,20=| 1 |, z3 = | —2|. Take for granted that z, z5, z3 are linearly independent.

2 4 1
We proceed to find an orthonormal basis for W = Span ({z1, z9,23}) = R,

1
o Takey; =z;. Theny; = |2], and |ly:1]|* = 9.
2
. 1/3
Take u; = yi. Then u; = |2/3].
Nall
2/3
o Take yo = 29 — <Z2’y;> 1.
1]
We have (z,y1) = 0.
—1 9 1 —2
Theny, = | 1 | — 9 2| = |—1|, and |y2||* = 9.
4 2 2
—2/3
Take uy = y2. Then uy = |—1/3].
el

2/3



(z3,¥1) (23,y2)

B e P A A TR
We have (z3,y1) = —3, (z3,y2) = 6.
1 1 2 2/3
Then y; = |—2| — _?3 2 —g —1| = [-2/3], and ||y3]]* = 1.
1 2 2 1/3
2/3
Take uz = Lyg. Then ug = |—2/3|.
[z iy

Ui, Uy, ug constitute an orthonormal basis for W.

Also note that, by construction, Span ({u;}) = Span ({z1}) and Span ({u;,us}) = Span ({z1, z2}).



—_ = = O

(b) Let z; = , Zo = , Z3 . Take for granted that zq, zo, z3 are linearly independent.

_ O
—_ = =

0

We proceed to find an orthonormal basis for W = Span ({z1, 22, z3}).

0
0 2
o Take y; =2;. Then y; = nE and ||y1/|* = 2.
_O_
_1/\/5_
Tak ! Th 0
ake u; = —V1. e u; = .
[Nt 1//2
0
e ya— o - L
1]
We have (z2,y1) = 2.
1] 1] 0]
1 210 1
Then y, = — = = , and 2 =2,
N e N e W R
1 0 1
C ]
1 1/v/2
Take up = ——ys. Then uy = /\/_ )
gl 0
1/v/2




(z3,¥1) (23,y2)

e Take = Zq — — )
BB TR yalP
We have <Z3,yl> = 1, <Z3,y'2> = 2.
0 1 0 —1/2
1 110 2 11 0 1
Then y3 = — = — = = , and 2= _,
ys 1 2 11 2 1o 1/2 HY3H
1 0 1 0
__1/\/5_
Tak ! Th X
ake u3 = ——ys. en us =
vl 1/v2
0

ui, Uy, u3 constitute an orthonormal basis for W.

Also note that, by construction, Span ({u;}) = Span ({z;}) and Span ({uy,us}) = Span ({z1,22}).



—_ = =

(c) Let z; = , Zo = , Z3 . Take for granted that zq, zo, z3 are linearly independent.

_ O
_— N = O

0

We proceed to find an orthonormal basis for W = Span ({z1, 22, z3}).

0
0 2
o Take y; =2;. Then y; = nE and ||y1/|* = 2.
_O_
_1/\/5_
Tak L Th 0
ake u; = —V1. e u; = .
[Nt 1//2
0
e ya— o - L
1]
We have (zs,y1) = 2.
0] 1] [-1]
1 210 1
Then y, = — = = , and 2 =4.
N e N
1 0 1
__1/2_
1 1/2
Take up = ——ys. Then uy = /
2] 1/2
1/2




(z3,¥1) (23,y2)

e Take = Zq — — )
IS TR T yel?
We have (z3,y1) = 2, (z3,y2) = 2.
1 1 ~1 1/2
1| 2ol 2|1 1/2
Then y3 = — = — - = , and 2=1.
ys 1 2 11 11 _1/2 HY3H
1 0 1 1/2
_ /2 -
1 1/2
Take ug = ——y3. Then uz = :
y
]| —1/2
1/2

ui, Uy, u3 constitute an orthonormal basis for W.

Also note that, by construction, Span ({u;}) = Span ({z;:}) and Span ({uy,us}) = Span ({z1,22}).



1] (2] [ 9 | 3]
p 6 9 _1 , ,
(d) Let z; = 5| Zoy = 5 | Z3 = nE Z4 = 5 Take for granted that z, 29, z3, 24 are linearly independent.
4 9 7 9
We proceed to find an orthonormal basis for W = Span ({z1, 23, z3,24}) = R%.
L
2 2
o Take y; =2z;. Theny; = 5| and ||y1]|* = 25.
4
_1/5_
1 2/5
Take uy = ——y;. Then u; = / )
1]l 2/5
4/5
o Take yo = z9 — <Z2’—y;>y1.
[y1l]
We have (z2,y1) = 50.
=] 1] [-4]
6 50 |2 2
en ys 5 % |9 ol and ||y2||
4 1
__4/5_
1 2/5
Take Uy = Yo. Then Uy = /
2| —2/5
1/5




(z3,¥1) (23,y2)

e Take = Zg — — )
A TR ER A
We have (z3,y1) = 25, (z3,y2) = —25.
[ 9] 1] 4] [ 4]
—2 25 |2 —25 | 2 —2
Then y; = _2 -2 - d |lys||2 = 100.
en ys i 55 |9 % | _o _3 , and ||ys|
7 4 1 4
_ 25 i}
1 —1/5
Take ug = ——y3. Then usg = / :
vl —4/5
2/5

<Z47Y1>y1 _ <Z4,YQ>y2 _ <Z4,Y3>y3
Vel Iy INEl

We have (z4,y1) = 25, (z4,y2) = 25, (z4,y3) = 50.

o Take yy =24 —

_3 (1] 4 4 (9]
~1] 2502 25| 2 50 |—2 4
Th — = = _ = — d 2 = 95.
nyi=1| ol =35 |y "2 | ol 100 |_s ,|oan [ yall
9 4 1 4 9
e
1 —4/5
Take uy = ——y4. Then uy = / .
[yl 1/5
2/5

uy, Uy, us, uy constitute an orthonormal basis for W.
Also note that, by construction, Span ({u;}) = Span ({z1}), Span ({uy,uz}) = Span ({z1,z2})and Span ({u;,uz, us}) =
Span ({z1,z2,23}).



8. Gram-Schmidt orthogonalization, presented as QR-decomposition.

Suppose Z is an (n X k)-matrix, with n > k. For each j =1,2,--- |k, the j-th column of Z by z; for.

Suppose z1, Zo, Z3, - - - , Z; are linearly independent.
1
We define y; = z1, u; = H Hyl, and define ys,y3, - - -,y inductively by
Y1
(zj, y1) (zj, y2) (zj, yj-1) 1
Vi =12Z; — Vi — — e — ="y, 4 u;=-——y; foreachj=23,-
S (1 ek (71 (21
These vectors y1,y2,y3, -+, yi are well-defined according to the argument for Theorem (H).
Define the matrix ) = [ulug--- uk]
For each 7 =1,2,--- , k, we have
zj = (zj,u) W+ (zj, U)o+ +(zj, u_)u g+ [[y;f| - u;+ 0w+ 4+ 0w
[ (up,z;)
<u27zj>
_ o |
;|
0
L O -




Define the (n x n)-square matrix R, whose (i, j)-th entry is denoted by r;; by

p
<ul~,zj> if Z<]

rig =9 lly;ll  ifi=
0 if ¢>7

\

i <u17 Zj> ]

(uz,z;)

(uj-1,2;) | )

(So, for each j = 1,2,---  n, the j-th column of R is Iy
Y

Then Z = QR.
This ‘“factorization’ of Z into the product QR is called the ‘QR-decomposition’ for Z.
Note that C(Z) = C(Q) and the columns of @) is an orthonormal basis for C(Z).

The matrix R encodes the Gram-Schmidt orthogonalization process from which we obtain the orthonormal

set Uy, Uy, - - - , uy from the linearly independent set zq, zo, - - - , zj.



9. Illustrations of QR-decomposition.
Refer to Illustrations on the Gram-Schmidt orthogonalization process above.

The respective constructions can be displayed as the ‘factorizations’ below:

1 -1 1| [1/3 -2/3 2/3 | [33 -1
@) |2 1 —2|=1]2/3-1/3 =2/3| |03 2
204 1| |2/32/3 13] 00 1
110 1/vV2 0 —1/V2 AT
) Or1f | 0 1/v2 0 VRN
111 [1/vV2 0 —1/V2 001\/5'
o11] | 0o 1/v2 o |t /v2 ]
(101 [1/v2 —1/2 —1/2] 5 S e
011 0 1/2 1/2
(c) = 0 2 1
121 1/vV2 1/2 —1/2
0 0 1
o111 [ o 12 1/2 |t |
(1 -2 9 3] [1/5 =4/5 2/5 —2/5][510 5 5]
<d> 2 6 -2 —1| |2/5 2/5 —1/5 —4/5| |0 5 —55
2 2 —4 —3| |2/5 —2/5 —4/5 1/5 00 10 5
49 7 9| |45 15 2/5 2/5 |00 0 5




