1. Recall the definition for the notion of orthogonality from the handout Inner product, norm, and orthogonality:

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. We say \mathbf{u} is orthogonal to \mathbf{v} , and write $\mathbf{u} \perp \mathbf{v}$, if and only if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Also reacll these basic properties of orthogonality:

- (a) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\mathbf{u} \perp \mathbf{v}$ if and only if $\mathbf{v} \perp \mathbf{u}$.
- (b) Suppose $\mathbf{u} \in \mathbb{R}^n$. Then $\mathbf{u} \perp \mathbf{u}$ if and only if $\mathbf{u} = \mathbf{0}_n$.
- (c) Suppose $\mathbf{u} \in \mathbb{R}^n$. Then $(\mathbf{u} \perp \mathbf{v} \text{ for any } \mathbf{v} \in \mathbb{R}^n)$ if and only if $\mathbf{u} = \mathbf{0}_n$.
- (d) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ if and only if $\mathbf{u} \perp \mathbf{v}$.

2. Theorem (A).

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ be non-zero vectors in \mathbb{R}^n . Suppose $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ are pairwise orthogonal (in the sense that $\mathbf{u}_i \perp \mathbf{u}_j$ whenever $i \neq j$.)

Then the statements below hold:

- (a) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly independent.
- (b) For any $\mathbf{v} \in \mathbb{R}^n$, if \mathbf{v} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ then $\mathbf{v} = \frac{\langle \mathbf{v}, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 + \frac{\langle \mathbf{v}, \mathbf{u}_2 \rangle}{\|\mathbf{u}_2\|^2} \mathbf{u}_2 + \cdots + \frac{\langle \mathbf{v}, \mathbf{u}_k \rangle}{\|\mathbf{u}_k\|^2} \mathbf{u}_k$.

3. Proof of Theorem (A).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ be non-zero vectors in \mathbb{R}^n . Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are pairwise orthogonal.

(a) Pick any $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}$. Suppose $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_k \mathbf{u}_k = \mathbf{0}$. For each $j = 1, 2, \dots, k$, we have

$$\alpha_{j} \|\mathbf{u}_{j}\|^{2} = \alpha_{1} \langle \mathbf{u}_{1}, \mathbf{u}_{j} \rangle + \alpha_{2} \langle \mathbf{u}_{2}, \mathbf{u}_{j} \rangle + \dots + \alpha_{k} \langle \mathbf{u}_{k}, \mathbf{u}_{j} \rangle$$

$$= \langle \alpha_{1} \mathbf{u}_{1} + \alpha_{2} \mathbf{u}_{2} + \dots + \alpha_{k} \mathbf{u}_{k}, \mathbf{u}_{j} \rangle$$

$$= \langle \mathbf{0}, \mathbf{u}_{j} \rangle = 0$$

Since \mathbf{u}_j is not the zero vector, $\|\mathbf{u}_j\| = 0$. Then $\alpha_j = 0$.

It follows that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly independent.

- (b) Exercise. (Imitate what has been done above.)
- 4. Definition. (Orthonormal set and orthonormal basis.)

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in \mathbb{R}^n$.

- (a) We say that $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ constitute an orthonormal set in \mathbb{R}^n if and only if $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ are pairwise orthogonal and $\|\mathbf{u}_j\| = 1$ for each $j = 1, 2 \dots, k$.
- (b) Suppose V is a subspace of \mathbb{R}^n . Then we say that $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ constitute an orthonormal basis for V if and only if $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ constitute a basis for V and also constitute an orthonormal set.

Remark. When $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ constitute an orthonormal set in \mathbb{R}^n , they constitute an orthonormal basis for Span $(\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\})$.

5. Theorem (B).

Let W be a subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ constitute an orthonormal basis for W.

Suppose $\mathbf{s}, \mathbf{t} \in W$. Define $\beta_j = \langle \mathbf{s}, \mathbf{u}_j \rangle$, $\gamma_j = \langle \mathbf{t}, \mathbf{u}_j \rangle$ for each $j = 1, 2, \dots, k$.

Then the statements below hold:

- (a) $\mathbf{s} = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_k \mathbf{u}_k$.
- (b) $\|\mathbf{s}\|^2 = {\beta_1}^2 + {\beta_2}^2 + \dots + {\beta_k}^2$.
- (c) $\langle \mathbf{s}, \mathbf{t} \rangle = \beta_1 \gamma_1 + \beta_2 \gamma_2 + \dots + \beta_k \gamma_k$.

6. Proof of Theorem (B).

Let W be a subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ constitute an orthonormal basis for W.

Suppose $\mathbf{s}, \mathbf{t} \in W$. Define $\beta_j = \langle \mathbf{s}, \mathbf{u}_j \rangle$, $\gamma_j = \langle \mathbf{t}, \mathbf{u}_j \rangle$ for each $j = 1, 2, \dots, k$.

- (a) Since $\mathbf{s} \in W$ and $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ constitute a basis for W, \mathbf{s} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$. Then, by Theorem (A), $\mathbf{s} = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_k \mathbf{u}_k$.
- (b) We have

$$\|\mathbf{s}\|^2 = \langle \mathbf{s}, \mathbf{s} \rangle = \langle \mathbf{s}, \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_k \mathbf{u}_k \rangle = \beta_1 \langle \mathbf{s}, \mathbf{u}_1 \rangle + \beta_2 \langle \mathbf{s}, \mathbf{u}_2 \rangle + \dots + \beta_k \langle \mathbf{s}, \mathbf{u}_k \rangle$$
$$= \beta_1^2 + \beta_2^2 + \dots + \beta_k^2.$$

(c) Exercise.

7. Theorem (C).

Let W be a subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ constitute an orthonormal basis for W.

Suppose $\mathbf{z} \in \mathbb{R}^n$.

Define $\alpha_1 = \langle \mathbf{z}, \mathbf{u}_1 \rangle$, $\alpha_2 = \langle \mathbf{z}, \mathbf{u}_2 \rangle$, ..., $\alpha_k = \langle \mathbf{z}, \mathbf{u}_k \rangle$.

Define $\mathbf{v} \in W$ by $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_k \mathbf{u}_k$.

Define $\mathbf{y} \in \mathbb{R}^n$ by $\mathbf{y} = \mathbf{z} - \mathbf{v}$.

Then the statements below hold:

- (a) i. $\mathbf{z} = \mathbf{v} + \mathbf{y}$.
 - ii. $\mathbf{y} \perp \mathbf{s}$ for any $\mathbf{s} \in W$. (In particular, $\mathbf{y} \perp \mathbf{v}$.)
- (b) Suppose $\mathbf{s} \in W$. Then $\|\mathbf{z} \mathbf{s}\| \ge \|\mathbf{z} \mathbf{v}\|$. Equality holds if and only if $\mathbf{s} = \mathbf{v}$.
- (c) The inequality $\|\mathbf{z}\|^2 \ge \alpha_1^2 + \alpha_2^2 + \dots + \alpha_k^2$ holds.

Moreover, the statements below are logically equivalent:

- i. $\mathbf{z} \in W$.
- ii. $\mathbf{z} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_k \mathbf{u}_k$.
- iii. $\|\mathbf{z}\|^2 = \alpha_1^2 + \alpha_2^2 + \dots + \alpha_k^2$.
- iv. For any $\mathbf{x} \in \mathbb{R}^n$, $\langle \mathbf{z}, \mathbf{x} \rangle = \alpha_1 \langle \mathbf{u}_1, \mathbf{x} \rangle + \alpha_2 \langle \mathbf{u}_2, \mathbf{x} \rangle + \cdots + \alpha_k \langle \mathbf{u}_k, \mathbf{x} \rangle$.

8. Illustrations of the construction described in Theorem (C).

(a) Let
$$\mathbf{u}_1 = \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}$$
, and $W = \mathsf{Span}\ (\{\mathbf{u}_1\})$

Note that $\|\mathbf{u}_1\| = 1$.

Then \mathbf{u}_1 constitute an orthonormal basis for W.

• Suppose
$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
.

Define $\alpha_1 = \langle \mathbf{z}, \mathbf{u}_1 \rangle$.

Define $\mathbf{v} = \alpha_1 \mathbf{u}_1$.

Then
$$\mathbf{v} = (\frac{\sqrt{3}}{2}z_1 + \frac{1}{2}z_2) \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 3z_1/4 + \sqrt{3}z_2/4 \\ \sqrt{3}z_1/4 + z_2/4 \end{bmatrix} = \begin{bmatrix} 3/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & 1/4 \end{bmatrix} \mathbf{z}.$$

Define $\mathbf{v} = \mathbf{z} - \mathbf{v}$.

Then
$$\mathbf{y} = \begin{bmatrix} z_1/4 - \sqrt{3}z_2/4 \\ -\sqrt{3}z_1/4 \end{bmatrix} + 3z_2/4 = \begin{bmatrix} 1/4 & -\sqrt{3}/4 \\ -\sqrt{3}/4 & 3/4 \end{bmatrix} \mathbf{z}.$$

 \mathbf{z} is 'decomposed' into the sum of \mathbf{v}, \mathbf{y} which form a pair of vectors orthogonal to each other, and in which the vector \mathbf{y} is orthogonal to every vector in W.

(b) Let
$$\mathbf{u}_1 = \mathbf{e}_1^{(3)}$$
, $\mathbf{u}_2 = \mathbf{e}_2^{(3)}$, and $W = \mathsf{Span}\ (\{\mathbf{u}_1, \mathbf{u_2}\})$.

Note that $\|\mathbf{u}_1\| = \|\mathbf{u}_2\| = 1$ and $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 0$.

Then $\mathbf{u}_1, \mathbf{u}_2$ constitute an orthonormal basis for W.

• Suppose
$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$
.

Define $\alpha_1 = \langle \mathbf{z}, \mathbf{u}_1 \rangle, \, \alpha_2 = \langle \mathbf{z}, \mathbf{u}_2 \rangle.$

Define $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2$.

Then
$$\mathbf{v} = z_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + z_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{z}.$$

Define $\mathbf{y} = \mathbf{z} - \mathbf{v}$.

Then
$$\mathbf{y} = \begin{bmatrix} 0 \\ 0 \\ z_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{z}.$$

 \mathbf{z} is 'decomposed' into the sum of \mathbf{v}, \mathbf{y} which form a pair of vectors orthogonal to each other, and in which the vector \mathbf{y} is orthogonal to every vector in W.

(c) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}$, and $W = \mathsf{Span}\ (\{\mathbf{u}_1, \mathbf{u}_2\})$.

Note that $\|\mathbf{u}_1\| = \|\mathbf{u}_2\| = 1$ and $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 0$.

Then $\mathbf{u}_1, \mathbf{u}_2$ constitute an orthonormal basis for W.

• Suppose
$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$
.

Define $\alpha_1 = \langle \mathbf{z}, \mathbf{u}_1 \rangle$, $\alpha_2 = \langle \mathbf{z}, \mathbf{u}_2 \rangle$.

Define $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2$.

Then
$$\mathbf{v} = (\frac{z_1}{3} + \frac{2z_2}{3} + \frac{2z_3}{3})\begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix} + (-\frac{2z_1}{3} - \frac{z_2}{3} + \frac{2z_3}{3})\begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix} = \dots = \begin{bmatrix} 5/9 & 4/9 & -2/9 \\ 4/9 & 5/9 & 2/9 \\ -2/9 & 2/9 & 8/9 \end{bmatrix} \mathbf{z}.$$

Define $\mathbf{y} = \mathbf{z} - \mathbf{v}$.

Then
$$\mathbf{y} = \dots = \begin{bmatrix} 4/9 & -4/9 & 2/9 \\ -4/9 & 4/9 & -2/9 \\ 2/9 & -2/9 & 1/9 \end{bmatrix} \mathbf{z}.$$

 \mathbf{z} is 'decomposed' into the sum of \mathbf{v}, \mathbf{y} which form a pair of vectors orthogonal to each other, and in which the vector \mathbf{y} is orthogonal to every vector in W.

(d) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$, and $W = \mathsf{Span}\ (\{\mathbf{u}_1, \mathbf{u}_2\})$.

Note that $\|\mathbf{u}_1\| = \|\mathbf{u}_2\| = 1$ and $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 0$.

Then $\mathbf{u}_1, \mathbf{u}_2$ constitute an orthonormal basis for W.

• Suppose
$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix}$$
.

Define $\alpha_1 = \langle \mathbf{z}, \mathbf{u}_1 \rangle, \ \alpha_2 = \langle \mathbf{z}, \mathbf{u}_2 \rangle.$

Define $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2$.

Then
$$\mathbf{v} = \left(\frac{z_1}{2} + \frac{z_2}{2} + \frac{z_3}{2} + \frac{z_4}{2}\right) \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} + \left(-\frac{z_1}{2} - \frac{z_2}{2} + \frac{z_3}{2} + \frac{z_4}{2}\right) \begin{bmatrix} -1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix} = \dots = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1/2 & 1/2 \end{bmatrix} \mathbf{z}.$$

Define $\mathbf{y} = \mathbf{z} - \mathbf{v}$.

Then
$$\mathbf{y} = \dots = \begin{bmatrix} 1/2 & -1/2 & 0 & 0 \\ -1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & -1/2 \\ 0 & 0 & -1/2 & 1/2 \end{bmatrix} \mathbf{z}.$$

 \mathbf{z} is 'decomposed' into the sum of \mathbf{v}, \mathbf{y} which form a pair of vectors orthogonal to each other, and in which the vector \mathbf{y} is orthogonal to every vector in W.

(e) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1/3 \\ 1/3 \\ 0 \\ 2/3 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2/3 \\ -1/3 \\ 2/3 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 2/3 \end{bmatrix}$, and $W = \text{Span } (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$.

Note that $\|\mathbf{u}_1\| = \|\mathbf{u}_2\| = \|\mathbf{u}_3\| = 1$ and $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle \mathbf{u}_1, \mathbf{u}_3 \rangle = \langle \mathbf{u}_2, \mathbf{u}_3 \rangle = 0$.

Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute an orthonormal basis for W.

• Suppose
$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix}$$
.

Define $\alpha_1 = \langle \mathbf{z}, \mathbf{u}_1 \rangle$, $\alpha_2 = \langle \mathbf{z}, \mathbf{u}_2 \rangle$, $\alpha_3 = \langle \mathbf{z}, \mathbf{u}_3 \rangle$.

Define $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3$.

Then

$$\mathbf{v} = \left(\frac{z_1}{3} + \frac{2z_2}{3} + \frac{2z_4}{3}\right) \begin{bmatrix} 1/3 \\ 2/3 \\ 0 \\ 2/3 \end{bmatrix} + \left(\frac{2z_1}{3} - \frac{z_2}{3} + \frac{2z_3}{3}\right) \begin{bmatrix} 2/3 \\ -1/3 \\ 2/3 \\ 0 \end{bmatrix} + \left(-\frac{2z_2}{3} - \frac{z_3}{3} + \frac{2z_4}{3}\right) \begin{bmatrix} 0 \\ -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}$$

$$= \cdots = \begin{bmatrix} 5/9 & 0 & 4/9 & 2/9 \\ 0 & 1 & 0 & 0 \\ 4/9 & 0 & 5/9 & -2/9 \\ 2/9 & 0 & -2/9 & 8/9 \end{bmatrix} \mathbf{z}.$$

Define $\mathbf{v} = \mathbf{z} - \mathbf{v}$

Then
$$\mathbf{y} = \dots = \begin{bmatrix} 4/9 & 0 & -4/9 & -2/9 \\ 0 & 0 & 0 & 0 \\ -4/9 & 0 & 4/9 & 2/9 \\ -2/9 & 0 & 2/9 & 1/9 \end{bmatrix} \mathbf{z}.$$

 \mathbf{z} is 'decomposed' into the sum of \mathbf{v}, \mathbf{y} which form a pair of vectors orthogonal to each other, and in which the vector \mathbf{y} is orthogonal to every vector in W.

9. Proof of Theorem (C).

Let W be a subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ constitute an orthonormal basis for W.

Suppose $\mathbf{z} \in \mathbb{R}^n$.

Define $\alpha_1 = \langle \mathbf{z}, \mathbf{u}_1 \rangle$, $\alpha_2 = \langle \mathbf{z}, \mathbf{u}_2 \rangle$, ..., $\alpha_k = \langle \mathbf{z}, \mathbf{u}_k \rangle$.

Define $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_k \mathbf{u}_k$, and $\mathbf{y} = \mathbf{z} - \mathbf{v}$.

- (a) i. By definition, $\mathbf{z} = \mathbf{v} + \mathbf{y}$.
 - ii. Pick any $\mathbf{s} \in W$. Define $\beta_1 = \langle \mathbf{s}, \mathbf{u}_1 \rangle$, $\beta_2 = \langle \mathbf{s}, \mathbf{u}_2 \rangle$, ..., $\beta_k = \langle \mathbf{s}, \mathbf{u}_k \rangle$. Then $\mathbf{s} = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \cdots + \beta_k \mathbf{u}_k$. Note that $\langle \mathbf{v}, \mathbf{s} \rangle = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \cdots + \alpha_k \beta_k$.

Also note that

$$\langle \mathbf{z}, \mathbf{s} \rangle = \langle \mathbf{z}, \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_k \mathbf{u}_k \rangle = \beta_1 \langle \mathbf{z}, \mathbf{u}_1 \rangle + \beta_2 \langle \mathbf{z}, \mathbf{u}_2 \rangle + \dots + \beta_k \langle \mathbf{z}, \mathbf{u}_k \rangle = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \dots + \alpha_k \beta_k.$$

Then $\langle \mathbf{y}, \mathbf{s} \rangle = \langle \mathbf{z} - \mathbf{v}, \mathbf{s} \rangle = \langle \mathbf{z}, \mathbf{s} \rangle - \langle \mathbf{v}, \mathbf{s} \rangle = 0.$

Therefore $\mathbf{y} \perp \mathbf{s}$.

(b) Suppose $\mathbf{s} \in W$.

Note that $\mathbf{v} \in W$. Then $\mathbf{v} - \mathbf{s} \in W$. Then $\mathbf{z} - \mathbf{v} \perp \mathbf{v} - \mathbf{s} \in W$.

- We have $\|\mathbf{z} \mathbf{s}\|^2 = \|(\mathbf{z} \mathbf{v}) + (\mathbf{v} \mathbf{s})\|^2 = \|\mathbf{z} \mathbf{v}\|^2 + \|\mathbf{v} \mathbf{s})\|^2$. Since $\|\mathbf{v} - \mathbf{s}\|^2 \ge 0$, we have $\|\mathbf{z} - \mathbf{s}\|^2 \ge \|\mathbf{z} - \mathbf{v}\|^2$. Then $\|\mathbf{z} - \mathbf{s}\| \ge \|\mathbf{z} - \mathbf{v}\|$.
- Suppose $\mathbf{s} = \mathbf{v}$. Then $\|\mathbf{z} \mathbf{s}\| = \|\mathbf{z} \mathbf{v}\|$.
- Suppose $\|\mathbf{z} \mathbf{s}\| = \|\mathbf{z} \mathbf{v}\|$. Then $\|\mathbf{v} \mathbf{s}\|^2 = 0$. Therefore $\mathbf{s} \mathbf{v} = \mathbf{0}$. Hence $\mathbf{s} = \mathbf{v}$.
- (c) Exercise. (Apply the definition of \mathbf{v} and \mathbf{y} . The inequality concerned is simply ' $\|\mathbf{z}\| \ge \|\mathbf{v}\|$ ' in disguise. Equality holds if and only if $\mathbf{y} = \mathbf{0}$.)

10. Recall the definition for the notion of orthogonal complement of a subspace of \mathbb{R}^n from the handout Orthogonal complement.

Suppose W is a subspace of \mathbb{R}^n .

The perp of W, which as a set is given by $W^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \perp \mathbf{u} \text{ for any } \mathbf{u} \in W \}$, is called the orthogonal complement of W in \mathbb{R}^n .

Also recall the result (\star) from the same handout:

Suppose W is a subspace of \mathbb{R}^n . Then for any $\mathbf{z} \in \mathbb{R}^n$, there exist some unique $\mathbf{s} \in W$, $\mathbf{t} \in W^{\perp}$ such that $\mathbf{z} = \mathbf{s} + \mathbf{t}$.

With the help of the result (\star) , we can enrich the content of part (a) in Theorem (C) by appending a 'uniqueness part'.

11. Theorem (D).

Let W be a subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ constitute an orthonormal basis for W.

Suppose $\mathbf{z} \in \mathbb{R}^n$.

Define $\alpha_1 = \langle \mathbf{z}, \mathbf{u}_1 \rangle$, $\alpha_2 = \langle \mathbf{z}, \mathbf{u}_2 \rangle$, ..., $\alpha_k = \langle \mathbf{z}, \mathbf{u}_k \rangle$.

Define $\mathbf{v} \in W$ by $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_k \mathbf{u}_k$.

Define $\mathbf{y} \in \mathbb{R}^n$ by $\mathbf{y} = \mathbf{z} - \mathbf{v}$.

Then the statements below hold:

- (a) i. z = v + y.
 ii. y ⊥ s for any s ∈ W. (In particular, y ⊥ v.)
- (b) Suppose $\mathbf{v}', \mathbf{y}' \in \mathbb{R}^n$. Suppose $\mathbf{v}' \in W$, $\mathbf{z} = \mathbf{v}' + \mathbf{y}'$, and $\mathbf{y} \perp \mathbf{s}$ for any $\mathbf{s} \in W$. Then $\mathbf{v}' = \mathbf{v}$ and $\mathbf{y}' = \mathbf{y}$.

Remarks.

• In plain words, statement (b) is saying that \mathbf{z} is decomposed in a unique way as a sum of two vectors, one in W and the other in W'. The two vectors are \mathbf{v} and \mathbf{y} respectively.

The vector \mathbf{v} is determined independent of the choice of orthonormal bases for W:

Suppose that $\mathbf{u}_1', \mathbf{u}_2', \cdots, \mathbf{u}_k'$ also constitute an orthonormal basis for W, and $\alpha_1' = \langle \mathbf{z}, \mathbf{u}_1' \rangle$, $\alpha_2' = \langle \mathbf{z}, \mathbf{u}_2' \rangle$, ..., $\alpha_k' = \langle \mathbf{z}, \mathbf{u}_k' \rangle$.

Further suppose that $\mathbf{v}' = \alpha_1' \mathbf{u}_1' + \alpha_2' \mathbf{u}_2' + \dots + \alpha_k' \mathbf{u}_k'$ and $\mathbf{y}' = \mathbf{z} - \mathbf{v}'$.

Then it happens that $\mathbf{v}' = \mathbf{v}$ and $\mathbf{y}' = \mathbf{y}$.

• Terminology. This uniqueness makes sense of naming the vectors \mathbf{v}, \mathbf{y} with reference to \mathbf{z} and W.

The vector \mathbf{v} is called the orthogonal projection of the vector \mathbf{z} onto W. It is denoted by $\mathsf{pr}_w(\mathbf{z})$.

The vector \mathbf{y} is called the orthogonal complement of \mathbf{z} with respect to W.

The other parts of Theorem (C) can be re-stated in terms of orthogonal projections.

12. Theorem (E).

Let W be a subspace of \mathbb{R}^n , and $\mathbf{z} \in \mathbb{R}^n$.

- (a) Suppose $\mathbf{s} \in W$. Then $\|\mathbf{z} \mathbf{s}\| \ge \|\mathbf{z} \mathsf{pr}_{w}(\mathbf{z})\|$. Equality holds if and only if $\mathbf{s} = \mathsf{pr}_{w}(\mathbf{z})$.
- (b) The inequality $\|\mathbf{z}\| \ge \|\mathsf{pr}_w(\mathbf{z})\|$ holds. Equality holds if and only if $\mathbf{z} \in W$.

Remarks.

• Statement (a) says that amongst all vectors in W, it is $\mathsf{pr}_{_W}(\mathbf{z})$ whose distance with \mathbf{z} is the smallest. In plain words, $\mathsf{pr}_{_W}(\mathbf{z})$ is the 'closest (or best) approximation' to \mathbf{z} amongst all vectors in W.

This result is the corner stone of the 'least square method' for finding approximations.

• Statement (b) says that the 'length' of the vector \mathbf{v} is no less than that of its projection onto W, which is $\mathsf{pr}_w(\mathbf{z})$.

This inequality is known as Bessel's Inequality.

13. Theorem (F).

Let W be a subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ constitute an orthonormal basis for W.

Define the $(n \times k)$ -matrix U by $U = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \cdots \mid \mathbf{u}_k]$.

Then the statements below hold:

- (a) For any $\mathbf{z} \in \mathbb{R}^n$, $\operatorname{pr}_{_W}(\mathbf{z}) = UU^t\mathbf{z}$.
- (b) UU^t is symmetric and idempotent.
- (c) $\mathcal{C}(UU^t) = W$.
- (d) $\mathcal{N}(UU^t) = W^{\perp}$.

Remarks.

• When $\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_k$ constitute an orthonormal basis for W and $S = [\mathbf{s}_1 \mid \mathbf{s}_2 \mid \dots \mid \mathbf{s}_k]$, we have $\mathsf{pr}_W(\mathbf{z}) = SS^t\mathbf{z}$ for any $\mathbf{z} \in \mathbb{R}^n$. It follows that $UU^t = SS^t$.

This $(n \times n)$ -square matrix is independent of the choice of orthonormal bases for W.

• Terminology. This uniqueness makes sense of naming the matrix UU^t with reference to W. The matrix UU^t is called the projection matrix from \mathbb{R}^4 onto W. Multiplication by this matrix from the left to a vector in \mathbb{R}^4 results in the orthogonal projection of that vector onto W.

14. Proof of Theorem (F).

Let W be a subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ constitute an orthonormal basis for W.

Define the $(n \times k)$ -matrix U by $U = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \cdots \mid \mathbf{u}_k]$.

(a) Pick any $\mathbf{z} \in \mathbb{R}^n$. We have

$$\begin{array}{lll} UU^{t}\mathbf{z} & = & U\begin{bmatrix} \frac{\mathbf{u}_{1}^{t}}{\mathbf{u}_{2}^{t}} \\ \vdots \\ \hline \mathbf{u}_{k}^{t} \end{bmatrix} \mathbf{z} = U\begin{bmatrix} \mathbf{u}_{1}^{t}\mathbf{z} \\ \mathbf{u}_{2}^{t}\mathbf{z} \\ \vdots \\ \mathbf{u}_{k}^{t}\mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1} \mid \mathbf{u}_{2} \mid \cdots \mid \mathbf{u}_{k} \end{bmatrix} \begin{bmatrix} \langle \mathbf{z}, \mathbf{u}_{1} \rangle \\ \langle \mathbf{z}, \mathbf{u}_{2} \rangle \\ \vdots \\ \langle \mathbf{z}, \mathbf{u}_{k} \rangle \end{bmatrix} \\ & = & \langle \mathbf{z}, \mathbf{u}_{1} \rangle \mathbf{u}_{1} + \langle \mathbf{z}, \mathbf{u}_{2} \rangle \mathbf{u}_{2} + \cdots + \langle \mathbf{z}, \mathbf{u}_{k} \rangle \mathbf{u}_{k} = \mathsf{pr}_{w}(\mathbf{z}) \end{array}$$

- (b) We have $(UU^t)^t = (U^t)^t U^t = UU^t$. Then UU^t is symmetric. We have $(UU^t)^2 = (UU^t)(UU^t) = U(U^tU)U^t = UI_kU^t = UU^t$. Then UU^t is idempotent.
- (c) We verify that $W = \mathcal{C}(UU^t)$:
 - [We verify that for any $\mathbf{x} \in \mathbb{R}^n$, if $\mathbf{x} \in W$ then $\mathbf{x} \in \mathcal{C}(UU^t)$.] Pick any $\mathbf{x} \in \mathbb{R}^n$. Suppose $\mathbf{x} \in W$.

Since $\mathbf{x} \in W$, We have $\mathbf{x} = \mathsf{pr}_{w}(\mathbf{x})$.

By the result in part (a), we have $pr_w(\mathbf{x}) = UU^t\mathbf{x}$.

Then $\mathbf{x} = UU^t\mathbf{x}$. Therefore, by definition, $\mathbf{x} \in \mathcal{C}(UU^t)$.

• [We verify that for any $\mathbf{x} \in \mathbb{R}^n$, if $\mathbf{x} \in \mathcal{C}(UU^t)$ then $\mathbf{x} \in W$.]

Pick any $\mathbf{x} \in \mathbb{R}^n$. Suppose $\mathbf{x} \in \mathcal{C}(UU^t)$.

Then there exists some $\mathbf{s} \in \mathbb{R}$ such that $\mathbf{x} = UU^t\mathbf{s}$.

Define $\mathbf{p} \in \mathbb{R}^k$ by $\mathbf{p} = U^t \mathbf{s}$.

Then $\mathbf{x} = U\mathbf{p}$.

Therefore, by definition, $\mathbf{x} \in \mathcal{C}(U)$.

By definition, $W = \text{Span} (\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}) = \mathcal{C}(U)$. Hence $\mathbf{x} \in W$.

(d) We have verified that $C(UU^t) = W$.

By part (b), UU^t is symmetric.

Then $\mathcal{N}((UU^t)) = \mathcal{N}((UU^t)^t) = (\mathcal{C}(UU^t))^{\perp} = W^{\perp}$.

15. Illustrations of the content of Theorem (F).

(a) Let
$$\mathbf{u}_1 = \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}$$
, and $W = \mathsf{Span}\ (\{\mathbf{u}_1\})$

 \mathbf{u}_1 constitute an orthonormal basis for W.

Define $U = \mathbf{u}_1$.

We have
$$UU^t = \begin{bmatrix} 3/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & 1/4 \end{bmatrix}$$
.

 UU^t is the projection matrix from \mathbb{R}^2 onto W: for any $\mathbf{z} \in \mathbb{R}^2$, $\mathsf{pr}_{_W}(\mathbf{z}) = UU^t\mathbf{z}$.

(b) Let $\mathbf{u}_1 = \mathbf{e}_1^{(3)}$, $\mathbf{u}_2 = \mathbf{e}_2^{(3)}$, and $W = \mathsf{Span} \ (\{\mathbf{u}_1, \mathbf{u}_2\})$.

 $\mathbf{u}_1, \mathbf{u}_2$ constitute an orthonormal basis for W.

Define
$$U = [\mathbf{u}_1 \mid \mathbf{u}_2].$$

We have
$$UU^t = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

 UU^t is the projection matrix from \mathbb{R}^3 onto W: for any $\mathbf{z} \in \mathbb{R}^3$, $\mathsf{pr}_w(\mathbf{z}) = UU^t\mathbf{z}$.

(c) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}$, and $W = \mathsf{Span}\ (\{\mathbf{u}_1, \mathbf{u}_2\})$.

 $\mathbf{u}_1, \mathbf{u}_2$ constitute an orthonormal basis for W.

Define
$$U = [\mathbf{u}_1 \mid \mathbf{u}_2].$$

We have
$$UU^t = \begin{bmatrix} 5/9 & 4/9 & -2/9 \\ 4/9 & 5/9 & 2/9 \\ -2/9 & 2/9 & 8/9 \end{bmatrix}$$
.

 UU^t is the projection matrix from \mathbb{R}^3 onto W: for any $\mathbf{z} \in \mathbb{R}^3$, $\mathsf{pr}_w(\mathbf{z}) = UU^t\mathbf{z}$.

(d) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$, and $W = \mathsf{Span}\ (\{\mathbf{u}_1, \mathbf{u}_2\})$.

 $\mathbf{u}_1, \mathbf{u}_2$ constitute an orthonormal basis for W.

Define
$$U = [\mathbf{u}_1 \mid \mathbf{u}_2]$$
.

We have
$$UU^t = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1/2 & 1/2 \end{bmatrix}$$
.

 UU^t is the projection matrix from \mathbb{R}^4 onto W: for any $\mathbf{z} \in \mathbb{R}^4$, $\mathsf{pr}_W(\mathbf{z}) = UU^t\mathbf{z}$.

(e) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1/3 \\ 1/3 \\ 0 \\ 2/3 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2/3 \\ -1/3 \\ 2/3 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 2/3 \end{bmatrix}$, and $W = \mathsf{Span}\ (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$.

 $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute an orthonormal basis for W.

Define
$$U = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \mathbf{u}_3].$$

We have
$$UU^t = \begin{bmatrix} 5/9 & 0 & 4/9 & 2/9 \\ 0 & 1 & 0 & 0 \\ 4/9 & 0 & 5/9 & -2/9 \\ 2/9 & 0 & -2/9 & 8/9 \end{bmatrix}$$
.

 UU^t is the projection matrix from \mathbb{R}^4 onto W: for any $\mathbf{z} \in \mathbb{R}^4$, $\mathsf{pr}_{W}(\mathbf{z}) = UU^t\mathbf{z}$.

7