
1. Recall the definition for the notion of orthogonality from the handout Inner product, norm,
and orthogonality:

Let u,v ∈ Rn.
We say u is orthogonal to v, and write u ⊥ v, if and only if ⟨u,v⟩ = 0.

Also reacll these basic properties of orthogonality:

(a) Suppose u,v ∈ Rn.
Then u ⊥ v if and only if v ⊥ u.

(b) Suppose u ∈ Rn.
Then u ⊥ u if and only if u = 0n.

(c) Suppose u ∈ Rn.
Then (u ⊥ v for any v ∈ Rn) if and only if u = 0n.

(d) Suppose u,v ∈ Rn.
Then ∥u + v∥2 = ∥u∥2 + ∥v∥2 if and only if u ⊥ v.
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2. Theorem (A).
Let u1,u2, · · · ,uk be non-zero vectors in Rn.
Suppose u1,u2, · · · ,uk are pairwise orthogonal (in the sense that ui ⊥ uj whenever i ̸= j.)
Then the statements below hold:

(a) u1,u2, · · · ,uk are linearly independent.
(b) For any v ∈ Rn, if v is a linear combination of u1,u2, · · · ,uk then

v =
⟨v,u1⟩
∥u1∥2

u1 +
⟨v,u2⟩
∥u2∥2

u2 + · · · + ⟨v,uk⟩
∥uk∥2

uk.
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3. Proof of Theorem (A).
Let u1,u2, · · · ,uk be non-zero vectors in Rn. Suppose u1,u2, · · · ,uk are pairwise orthog-
onal.

(a) Pick any α1, α2, · · · , αk ∈ R. Suppose α1u1 + α2u2 + · · · + αkuk = 0.
For each j = 1, 2, · · · , k, we have

αj∥uj∥2 = α1 ⟨u1,uj⟩ + α2 ⟨u2,uj⟩ + · · · + αk ⟨uk,uj⟩
= ⟨α1u1 + α2u2 + · · · + αkuk,uj⟩
= ⟨0,uj⟩ = 0

Since uj is not the zero vector, ∥uj∥ = 0. Then αj = 0.
It follows that u1,u2, · · · ,uk are linearly independent.

(b) Exercise. (Imitate what has been done above.)
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4. Definition. (Orthonormal set and orthonormal basis.)
Let u1,u2, · · · ,uk ∈ Rn.

(a) We say that u1,u2, · · · ,uk constitute an orthonormal set in Rn if and only if u1,u2, · · · ,uk

are pairwise orthogonal and ∥uj∥ = 1 for each j = 1, 2 · · · , k.
(b) Suppose V is a subspace of Rn.

Then we say that u1,u2, · · · ,uk constitute an orthonormal basis for V if and only if
u1,u2, · · · ,uk constitute a basis for V and constitute an orthonormal set.

Remark.
When u1,u2, · · · ,uk constitute an orthonormal set in Rn, they constitute an orthonormal
basis for Span ({u1,u2, · · · ,uk}).
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5. Theorem (B).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Suppose s, t ∈ W .
Define βj = ⟨s,uj⟩, γj = ⟨t,uj⟩ for each j = 1, 2, · · · , k.
Then the statements below hold:

(a) s = β1u1 + β2u2 + · · · + βkuk.
(b) ∥s∥2 = β1

2 + β2
2 + · · · + βk

2.
(c) ⟨s, t⟩ = β1γ1 + β2γ2 + · · · + βkγk.
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6. Proof of Theorem (B).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Suppose s, t ∈ W .
Define βj = ⟨s,uj⟩, γj = ⟨t,uj⟩ for each j = 1, 2, · · · , k.

(a) Since s ∈ W and u1,u2, · · · ,uk constitute a basis for W , s is a linear combination of
u1,u2, · · · ,uk.
Then, by Theorem (A),

s = β1u1 + β2u2 + · · · + βkuk.

(b) We have

∥s∥2 = ⟨s, s⟩
= ⟨s, β1u1 + β2u2 + · · · + βkuk⟩
= β1 ⟨s,u1⟩ + β2 ⟨s,u2⟩ + · · · + βk ⟨s,uk⟩
= β1

2 + β2
2 + · · · + βk

2.

(c) Exercise.
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7. Theorem (C).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Suppose z ∈ Rn. Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩, ..., αk = ⟨z,uk⟩.
Define v ∈ W by v = α1u1 + α2u2 + · · · + αkuk. Define y ∈ Rn by y = z− v.
Then the statements below hold:

(a) i. z = v + y.
ii. y ⊥ s for any s ∈ W . (In particular, y ⊥ v.)

(b) Suppose s ∈ W .
Then ∥z− s∥ ≥ ∥z− v∥. Equality holds if and only if s = v.

(c) The inequality ∥z∥2 ≥ α1
2 + α2

2 + · · · + αk
2 holds.

Moreover, the statements below are logically equivalent:
i. z ∈ W .
ii. z = α1u1 + α2u2 + · · · + αkuk.
iii. ∥z∥2 = α1

2 + α2
2 + · · · + αk

2.

iv. For any x ∈ Rn, ⟨z,x⟩ = α1 ⟨u1,x⟩ + α2 ⟨u2,x⟩ + · · · + αk ⟨uk,x⟩.
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8. Illustrations of the construction described in Theorem (C).

(a) Let u1 =

[√
3/2

1/2

]
, and W = Span ({u1})

Note that ∥u1∥ = 1.
Then u1 constitute an orthonormal basis for W .

• Suppose z =

[
z1

z2

]
.

Define α1 = ⟨z,u1⟩.
Define v = α1u1.

Then v = (

√
3

2
z1 +

1

2
z2)

[√
3/2

1/2

]
=

[
3z1/4 +

√
3z2/4√

3z1/4 + z2/4

]
=

[
3/4

√
3/4√

3/4 1/4

]
z.

Define y = z− v.

Then y =

[
z1/4−

√
3z2/4

−
√
3z1/4

]
+ 3z2/4 =

[
1/4 −

√
3/4

−
√
3/4 3/4

]
z.

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each
other, and in which the vector y is orthogonal to every vector in W .
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(b) Let u1 = e
(3)
1 , u2 = e

(3)
2 , and W = Span ({u1,u2}).

Note that ∥u1∥ = ∥u2∥ = 1 and ⟨u1,u2⟩ = 0.
Then u1,u2 constitute an orthonormal basis for W .

• Suppose z =

z1z2
z3

.

Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩.
Define v = α1u1 + α2u2.

Then v = z1

10
0

 + z2

01
0

 =

z1z2
0

 =

 1 0 0

0 1 0

0 0 0

z.

Define y = z− v.

Then y =

 0

0

z3

 =

 0 0 0

0 0 0

0 0 1

z.

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each
other, and in which the vector y is orthogonal to every vector in W .
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(c) Let u1 =

1/32/3

2/3

 ,u2 =

−2/3

−1/3

2/3

, and W = Span ({u1,u2}).

Note that ∥u1∥ = ∥u2∥ = 1 and ⟨u1,u2⟩ = 0.
Then u1,u2 constitute an orthonormal basis for W .

• Suppose z =

z1z2
z3

.

Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩.
Define v = α1u1 + α2u2.

Then v = (
z1
3
+

2z2
3

+
2z3
3
)

1/32/3

2/3

 + (−2z1
3

− z2
3
+

2z3
3
)

−2/3

−1/3

2/3

 = · · · =

 5/9 4/9 −2/9

4/9 5/9 2/9

−2/9 2/9 8/9

z.

Define y = z− v.

Then y = · · · =

 4/9 −4/9 2/9

−4/9 4/9 −2/9

2/9 −2/9 1/9

z.

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each other, and in which
the vector y is orthogonal to every vector in W .
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(d) Let u1 =


1/2

1/2

1/2

1/2

 ,u2 =


−1/2

−1/2

1/2

1/2

, and W = Span ({u1,u2}).

Note that ∥u1∥ = ∥u2∥ = 1 and ⟨u1,u2⟩ = 0.
Then u1,u2 constitute an orthonormal basis for W .

• Suppose z =


z1

z2

z3

z4

. Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩. Define v = α1u1 + α2u2.

Then v = (
z1
2
+
z2
2
+
z3
2
+
z4
2
)


1/2

1/2

1/2

1/2

+(−z1
2
− z2

2
+
z3
2
+
z4
2
)


−1/2

−1/2

1/2

1/2

 = · · · =


1/2 1/2 0 0

1/2 1/2 0 0

0 0 1/2 1/2

0 0 1/2 1/2

z.

Define y = z− v. Then y = · · · =


1/2 −1/2 0 0

−1/2 1/2 0 0

0 0 1/2 −1/2

0 0 −1/2 1/2

z.

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each other, and in which
the vector y is orthogonal to every vector in W .

11



(e) Let u1 =


1/3

1/3

0

2/3

 ,u2 =


2/3

−1/3

2/3

0

 ,u3 =


0

−2/3

1/3

2/3

, and W = Span ({u1,u2,u3}).

Note that ∥u1∥ = ∥u2∥ = ∥u3∥ = 1 and ⟨u1,u2⟩ = ⟨u1,u3⟩ = ⟨u2,u3⟩ = 0.
Then u1,u2,u3 constitute an orthonormal basis for W .

• Suppose z =


z1

z2

z3

z4

. Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩, α3 = ⟨z,u3⟩. Define v = α1u1 + α2u2 + α3u3.

Then

v = (
z1
3
+

2z2
3

+
2z4
3
)


1/3

2/3

0

2/3

+ (
2z1
3

− z2
3
+

2z3
3
)


2/3

−1/3

2/3

0

+ (−2z2
3

− z3
3
+

2z4
3
)


0

−2/3

−1/3

2/3

 =


5/9 0 4/9 2/9

0 1 0 0

4/9 0 5/9 −2/9

2/9 0 −2/9 8/9

z.

Define y = z− v. Then y = · · · =


4/9 0 −4/9 −2/9

0 0 0 0

−4/9 0 4/9 2/9

−2/9 0 2/9 1/9

z.

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each other, and in which the vector
y is orthogonal to every vector in W .
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9. Proof of Theorem (C).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Suppose z ∈ Rn.
Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩, ..., αk = ⟨z,uk⟩.
Define v = α1u1 + α2u2 + · · · + αkuk, and y = z− v.

(a) i. By definition, z = v + y.
ii. Pick any s ∈ W . Define β1 = ⟨s,u1⟩, β2 = ⟨s,u2⟩, ..., βk = ⟨s,uk⟩.

Then s = β1u1 + β2u2 + · · · + βkuk.
Note that ⟨v, s⟩ = α1β1 + α2β2 + · · · + αkβk.
Also note that

⟨z, s⟩ = ⟨z, β1u1 + β2u2 + · · · + βkuk⟩
= β1 ⟨z,u1⟩ + β2 ⟨z,u2⟩ + · · · + βk ⟨z,uk⟩
= α1β1 + α2β2 + · · · + αkβk.

Then ⟨y, s⟩ = ⟨z− v, s⟩ = ⟨z, s⟩ − ⟨v, s⟩ = 0.
Therefore y ⊥ s.
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(b) Suppose s ∈ W .
Note that v ∈ W . Then v − s ∈ W . Then z− v ⊥ v − s ∈ W .
• We have ∥z− s∥2 = ∥(z− v) + (v − s)∥2 = ∥z− v∥2 + ∥v − s)∥2.

Since ∥v − s∥2 ≥ 0, we have ∥z− s∥2 ≥ ∥z− v∥2.
Then ∥z− s∥ ≥ ∥z− v∥.

• Suppose s = v. Then ∥z− s∥ = ∥z− v∥.
• Suppose ∥z− s∥ = ∥z− v∥. Then ∥v − s∥2 = 0.

Therefore s− v = 0. Hence s = v.
(c) Exercise. (Apply the definition of v and y.

The inequality concerned is simply ‘∥z∥ ≥ ∥v∥’ in disguise.
Equality holds if and only if y = 0.)
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10. Recall the definition for the notion of orthogonal complement of a subspace of Rn from
the handout Orthogonal complement.

Suppose W is a subspace of Rn.
The perp of W , which as a set is given by W⊥ = {x ∈ Rn : x ⊥ u for any u ∈ W}, is
called the orthogonal complement of W in Rn.

Also recall the result (⋆) from the same handout:

Suppose W is a subspace of Rn. Then for any z ∈ Rn, there exist some unique s ∈ W ,
t ∈ W⊥ such that z = s + t.

With the help of the result (⋆), we can enrich the content of part (a) in Theorem (C) by
appending a ‘uniqueness part’.
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11. Theorem (D).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Suppose z ∈ Rn.
Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩, ..., αk = ⟨z,uk⟩.
Define v ∈ W by v = α1u1 + α2u2 + · · · + αkuk.
Define y ∈ Rn by y = z− v.
Then the statements below hold:

(a) i. z = v + y.
ii. y ⊥ s for any s ∈ W . (In particular, y ⊥ v.)

(b) Suppose v′,y′ ∈ Rn.
Suppose v′ ∈ W , z = v′ + y′, and y ⊥ s for any s ∈ W . Then v′ = v and y′ = y.
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Remarks.

• In plain words, statement (b) is saying that z is decomposed in a unique way as a sum
of two vectors, one in W and the other in W ′. The two vectors are v and y respectively.
The vector v is determined independent of the choice of orthonormal bases for W :

Suppose that u′
1,u

′
2, · · · ,u′

k also constitute an orthonormal basis for W , and α′
1 =

⟨z,u′
1⟩, α′

2 = ⟨z,u′
2⟩, ..., α′

k = ⟨z,u′
k⟩.

Further suppose that v′ = α′
1u

′
1 + α′

2u
′
2 + · · · + α′

ku
′
k and y′ = z− v′.

Then it happens that v′ = v and y′ = y.
• Terminology.

This uniqueness makes sense of naming the vectors v,y with reference to z and W .
The vector v is called the orthogonal projection of the vector z onto W . It is denoted
by pr

W
(z).

The vector y is called the orthogonal complement of z with respect to W .

The other parts of Theorem (C) can be re-stated in terms of orthogonal projections.
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12. Theorem (E).
Let W be a subspace of Rn, and z ∈ Rn.

(a) Suppose s ∈ W .
Then ∥z− s∥ ≥ ∥z− pr

W
(z)∥.

Equality holds if and only if s = pr
W
(z).

(b) The inequality ∥z∥ ≥ ∥pr
W
(z)∥ holds.

Equality holds if and only if z ∈ W .

Remarks.

• Statement (a) says that amongst all vectors in W , it is pr
W
(z) whose distance with z is

the smallest.
In plain words, pr

W
(z) is the ‘closest (or best) approximation’ to z amongst all vectors

in W .
This result is the corner stone of the ‘least square method’ for finding approximations.

• Statement (b) says that the ‘length’ of the vector v is no less than that of its projection
onto W , which is pr

W
(z).

This inequality is known as Bessel’s Inequality.
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13. Theorem (F).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Define the (n× k)-matrix U by U =

[
u1 u2 · · · uk

]
.

Then the statements below hold:

(a) For any z ∈ Rn, pr
W
(z) = UU tz.

(b) UU t is symmetric and idempotent.
(c) C(UU t) = W .
(d) N (UU t) = W⊥.

Remarks.

• When s1, s2, · · · , sk constitute an orthonormal basis for W and S =
[
s1 s2 · · · sk

]
,

we have pr
W
(z) = SStz for any z ∈ Rn. It follows that UU t = SSt.

This (n× n)-square matrix is independent of the choice of orthonormal bases for W .
• Terminology.

This uniqueness makes sense of naming the matrix UU t with reference to W .
The matrix UU t is called the projection matrix from R4 onto W . Multiplication by this
matrix from the left to a vector in R4 results in the orthogonal projection of that vector
onto W .
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14. Proof of Theorem (F).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Define the (n× k)-matrix U by U =

[
u1 u2 · · · uk

]
.

(a) Pick any z ∈ Rn. We have

UU tz = U


u1

t

u2
t

...
uk

t

z = U


u1

tz

u2
tz
...

uk
tz

 =
[
u1 u2 · · · uk

]

⟨z,u1⟩
⟨z,u2⟩

...
⟨z,uk⟩


= ⟨z,u1⟩u1 + ⟨z,u2⟩u2 + · · · + ⟨z,uk⟩uk = pr

W
(z)

(b) We have (UU t)t = (U t)tU t = UU t. Then UU t is symmetric.
We have (UU t)2 = (UU t)(UU t) = U(U tU)U t = UIkU

t = UU t. Then UU t is idempo-
tent.
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(c) We verify that W = C(UU t):
• [We verify that for any x ∈ Rn, if x ∈ W then x ∈ C(UU t).]

Pick any x ∈ Rn. Suppose x ∈ W .
Since x ∈ W , We have x = pr

W
(x).

By the result in part (a), we have pr
W
(x) = UU tx.

Then x = UU tx. Therefore, by definition, x ∈ C(UU t).
• [We verify that for any x ∈ Rn, if x ∈ C(UU t) then x ∈ W .]

Pick any x ∈ Rn. Suppose x ∈ C(UU t).
Then there exists some s ∈ R such that x = UU ts.
Define p ∈ Rk by p = U ts.
Then x = Up.
Therefore, by definition, x ∈ C(U).
By definition, W = Span ({u1,u2, · · · ,uk}) = C(U). Hence x ∈ W .

(d) We have verified that C(UU t) = W .
By part (b), UU t is symmetric.
Then N ((UU t)) = N ((UU t)t) = (C(UU t))⊥ = W⊥.
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15. Illustrations of the content of Theorem (F).

(a) Let u1 =

[√
3/2

1/2

]
, and W = Span ({u1})

u1 constitute an orthonormal basis for W .
Define U = u1.

We have UU t =

[
3/4

√
3/4√

3/4 1/4

]
.

UU t is the projection matrix from R2 onto W : for any z ∈ R2, pr
W
(z) = UU tz.

(b) Let u1 = e
(3)
1 , u2 = e

(3)
2 , and W = Span ({u1,u2}).

u1,u2 constitute an orthonormal basis for W .
Define U =

[
u1 u2

]
.

We have UU t =

 1 0 0

0 1 0

0 0 0

.

UU t is the projection matrix from R3 onto W : for any z ∈ R3, pr
W
(z) = UU tz.
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(c) Let u1 =

1/32/3

2/3

 ,u2 =

−2/3

−1/3

2/3

, and W = Span ({u1,u2}).

u1,u2 constitute an orthonormal basis for W .
Define U =

[
u1 u2

]
.

We have UU t =

 5/9 4/9 −2/9

4/9 5/9 2/9

−2/9 2/9 8/9

.

UU t is the projection matrix from R3 onto W : for any z ∈ R3, pr
W
(z) = UU tz.
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(d) Let u1 =


1/2

1/2

1/2

1/2

 ,u2 =


−1/2

−1/2

1/2

1/2

, and W = Span ({u1,u2}).

u1,u2 constitute an orthonormal basis for W .
Define U =

[
u1 u2

]
.

We have UU t =


1/2 1/2 0 0

1/2 1/2 0 0

0 0 1/2 1/2

0 0 1/2 1/2

.

UU t is the projection matrix from R4 onto W : for any z ∈ R4, pr
W
(z) = UU tz.
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(e) Let u1 =


1/3

1/3

0

2/3

 ,u2 =


2/3

−1/3

2/3

0

 ,u3 =


0

−2/3

1/3

2/3

, and W = Span ({u1,u2,u3}).

u1,u2,u3 constitute an orthonormal basis for W .
Define U =

[
u1 u2 u3

]
.

We have UU t =


5/9 0 4/9 2/9

0 1 0 0

4/9 0 5/9 −2/9

2/9 0 −2/9 8/9

.

UU t is the projection matrix from R4 onto W : for any z ∈ R4, pr
W
(z) = UU tz.
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