1. Lemma (1).

Let H, B be (n x n)-square matrices. Suppose H is a row-operation matrix.
Then det(H B) = det(H) det(B).

Proof of Lemma (1).

Let H, B be (n X n)-square matrices. Suppose H is a row-operation matrix.

(a) Suppose H is the row operation matrix corresponding to the row operation aR; + Ry, for
some distinct 7, £ and for some real number «.

Then det(H) = 1.

H B is obtained by B by adding a scalar multiple of the 2-th row to the k-th row.
Then det(H B) = det(B).

Therefore det(HB) = 1 - det(B) = det(H ) det(B).



(b) Suppose H is the row operation matrix corresponding to the row operation S R; for some
non-zero real number 3.

Then det(H) = B.

H B is obtained by B by multiplying every entry of the ¢-th row by (.
Then det(HB) = £ det(B).

Therefore det(H B) = beta det(B) = det(H ) det(B).

(¢c) Suppose H is the row operation matrix corresponding to the row operation R; <> Ry for
some distinct 7, k.

Then det(H) = —1.

H B is obtained by B by interchanging the i-th row and the k-th row.
Then det(HB) = — det(B).

Therefore det(H B) = — det(B) = det(H) det(B).

Hence, in any case, det(H B) = det(H ) det(B).



2. Theorem (2).

Let A, B be (n X n)-square matrices. Suppose A is nonsingular. Then det(AB) =
det(A) det(B).

Proof of Theorem (2).
Let A, B be (n x n)-square matrices. Suppose A is nonsingular.

Then there are some k row-operation matrices, say, Hy, Ho, --- , Hj, so that
A=H.H._,--- HH;.
Therefore

det(AB) — det(Hka_l s HQHlB)
= th(Hk) det(Hk_l s HQHlB)

= det(Hk) det(Hk_1> det<H2>
= det(Hy) det(Hy_1) - - - det(Hs) de

H
— d€t<Hka_1 s HQHl) det(B)

CLQ

ot(H,B)
t(H1) det(B)
det(A) det(B)

Then det(AB) = det(A) det(B).



3. Lemma (3).
Let C' be an (n x n)-square matrix. Suppose C' is singular.
Then det(C') = 0.

Proof of Lemma (3).

Let C' be an (n X n)-square matrix. Suppose C' is singular.

Denote by C” the reduced row-echelon form which is row-equivalent to C.
Note that det(C”) = 0, because there is at least one entire row of 0’s in C".

There is some non-singular (n X n)-square matrix A such that C = AC". (Why?)
Then det(C') = det(AC") = det(A) det(C’) = 0.

4. Theorem (4).
Let A, B be (n X n)-square matrices. Suppose A is singular.
Then det(AB) = 0 = det(A) det(B).

Proof of Theorem (4).

Let A, B be (n X n)-square matrices. Suppose A is singular.
Then det(A) = 0. Therefore det(A) det(B) = 0.

Since A is singular, AB is also singular. Then det(AB) = 0.
Therefore det(AB) = 0 = det(A) det(B).



5. Combining Theorem (2) and Theorem (4), we obtain the result below:
Theorem ().

Suppose A, B are (n x n)-square matrices.
Then det(AB) = det(A) det(B).
Remark. Actually it further follows that
det(AB) = det(A) det(B) = det(B) det(A) = det(BA).

However, note that AB and BA are not necessarily the same matrix.

6. An immediate consequence of Theorem () is Theorem (7).

Theorem (7).

Suppose A is an (n X n)-square matrix. Then the statements below hole:
(a) For any positive integer p, det(AP) = (det(A))?.

(b) Suppose A is invertible. Then det(A) # 0, and det(A™!) = (det(A))~.



7. Statement (b) in Theorem (7) tells us that if a square matrix is invertible then its determi-
nant 1s non-zero.

[t is natural to ask whether it is true that if the determinant of a square matrix is non-zero
then the matrix concerned is invertible. The answer is provided by Theorem (5).

Theorem (5).
Let A be an (n X n)-square matrix. Suppose det(A) # 0. Then A is invertible.

Proof of Theorem (5).

Let A be an (n x n)-square matrix. Suppose det(A) # 0.

Denote by A’ the reduced row-echelon form which is row-equivalent to A.
There exists some non-singular (n X n)-square matrix H such that A" = HA.
By Theorem (¢), we have det(A") = det(H) det(A).

Since H is non-singular, we have det(H) # 0. By assumption, det(A) # 0.
Then det(A’) # 0.

By assumption A’ is a reduced row-echelon form. Since det(A’) # 0, there is no row of A’
which is a row of 0’s. Then every row of A’ contains a leading one.

Therefore A’ = I,,.

Hence A is row equivalent to I,,. Then A is non-singular.



8. Combining Theorem (7)) and Theorem (5), we obtain the result below:
Theorem (0).

Suppose A is an (n X n)-square matrix.

Then the statements below are logically equivalent:
(a) A is non-singular.
(b) A is invertible.

(c) det(A) # 0.

9. Corollary to Theorem (6).
Suppose A is an (n X n)-square matrix.
Then the statements below are logically equivalent:
(a) A is singular.
(b) A is not invertible.
(c) det(A) = 0.



10. We now compile and re-organized all the various re-formulations for the notions of non-
singularity and invertibility that we have learnt so far into one single result:

Theorem (¢). (Various re-formulations for the notions of non-singularity
and invertibility.)

Let A be an (n X n)-matrix.

(a) The statements below are logically equivalent:
i. A is non-singular.

ii. For any vector v in R", if Av = 0 then v = 0.
iii. The trivial solution is the only solution of the homogeneous system LS(A, 0).
iv. A is row-equivalent to I,,.
v. A is invertible.
vi. There exists some (n X n)-square matrix H such that HA = I,,.

vii. There exists some (n X n)-square matrix G such that AG = I,,.

viil. For any vector b in R", the system LS(A, b) has one and only one solution, namely,

x=A"1b’

ix. For any vector ¢ in R", the system LS(A, c) has at least one solution.
x. For any vector d in R", the system LS(A, d) has at most one solution.



(b) The statements below are logically equivalent:
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. A is non-singular.

. A' is non-singular.

. For any vector v in R", if A'v = 0 then v = 0.

. The trivial solution is the only solution of the homogeneous system LS(A', 0).

. Al is row-equivalent to I,,.

. Al is invertible.

. There exists some (n X n)-square matrix H such that JA"' = I,,.

. There exists some (n X n)-square matrix G such that A'K = I,,.

. For any vector b in R, the system LS(A!, b) has one and only one solution, namely,
x = (AN 'b’

. For any vector ¢ in R", the system LS(A?, ¢) has at least one solution.

. For any vector d in R", the system LS(A!, d) has at most one solution.



(¢) Denote the j-th column of A by u; for each j =1,2,--- ,n.
The statements below are logically equivalent:
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A is non-singular.

Every vector in R" is a linear combination of uy, s, - - - , W,
ui, Uo, - - - , U, are linearly independent.
up, Uy, - - -, u, constitute a basis for R".

The dimension of the column space of A is n.

The dimension of the null space of A is 0.
det(A) # 0.

(d) Denote the i-th row of A by w; for eachi =1,2,--+ n.
The statements below are logically equivalent:
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. A is non-singular.
. A! is non-singular.

. Every vector in R" is a linear combination of wi', wy!,--- , w,’.

t are linearly independent.

t

v. wil, wol, - -+, w,!. constitute a basis for R".
vi. The dimension of the row space of A is n.
vii. The dimension of the null space of A® is 0.

viil. det(A?) £ 0.



(e) Now further suppose A is non-singular, with a sequence of row operations

A=C > Oy P —)Cp_1—>0p: s

P1 P2 Pp—2 Pp—1

and with H} being the row-operation matrix corresponding to p;. for each k.

Then [I,|A™Y is the resultant of the application of the same sequence of row operations
P1, P2, -+, Pp—1 Starting from [A|I,]:

[Aun] — [Cl|[n] ?[C2|Hl]
—)[C3|H2H1]

P2

—|Cp1|Hp—z - - Hy ]

Pp—2

—[Cp|Hyr -+ - HoHi| = [I,| A7),

Pp—1
Moreover, A= and A are respectively given as products of row-operation matrices by

A'=H, - HyH, A=H'Hy ' H, 7"



