1. Lemma (1).

Let H, B be $(n \times n)$ -square matrices. Suppose H is a row-operation matrix. Then $\det(HB) = \det(H) \det(B)$.

Proof of Lemma (1).

Let H, B be $(n \times n)$ -square matrices. Suppose H is a row-operation matrix.

(a) Suppose H is the row operation matrix corresponding to the row operation αR_i + R_k for some distinct i, k and for some real number α.
Then det(H) = 1.
HB is obtained by B by adding a scalar multiple of the i-th row to the k-th row.
Then det(HB) = det(B).
Therefore det(HB) = 1 · det(B) = det(H) det(B).

(b) Suppose H is the row operation matrix corresponding to the row operation βR_i for some non-zero real number β .

Then $\det(H) = \beta$. HB is obtained by B by multiplying every entry of the *i*-th row by β . Then $\det(HB) = \beta \det(B)$. Therefore $\det(HB) = beta \det(B) = \det(H) \det(B)$.

(c) Suppose H is the row operation matrix corresponding to the row operation $R_i \leftrightarrow R_k$ for some distinct i, k.

```
Then \det(H) = -1.
```

HB is obtained by B by interchanging the *i*-th row and the *k*-th row.

Then $\det(HB) = -\det(B)$.

Therefore det(HB) = -det(B) = det(H) det(B).

Hence, in any case, det(HB) = det(H) det(B).

2. Theorem (2).

Let A, B be $(n \times n)$ -square matrices. Suppose A is nonsingular. Then det(AB) = det(A) det(B).

Proof of Theorem (2).

Let A, B be $(n \times n)$ -square matrices. Suppose A is nonsingular. Then there are some k row-operation matrices, say, H_1, H_2, \dots, H_k , so that

$$A = H_k H_{k-1} \cdots H_2 H_1.$$

Therefore

$$det(AB) = det(H_k H_{k-1} \cdots H_2 H_1 B)$$

= $det(H_k) det(H_{k-1} \cdots H_2 H_1 B)$
= \cdots
= $det(H_k) det(H_{k-1}) \cdots det(H_2) det(H_1 B)$
= $det(H_k) det(H_{k-1}) \cdots det(H_2) det(H_1) det(B)$
= $det(H_k H_{k-1} \cdots H_2 H_1) det(B) = det(A) det(B)$

Then $\det(AB) = \det(A) \det(B)$.

3. Lemma (3).

Let C be an $(n \times n)$ -square matrix. Suppose C is singular. Then det(C) = 0.

Proof of Lemma (3).

Let C be an $(n \times n)$ -square matrix. Suppose C is singular. Denote by C' the reduced row-echelon form which is row-equivalent to C. Note that $\det(C') = 0$, because there is at least one entire row of 0's in C'. There is some non-singular $(n \times n)$ -square matrix A such that C = AC'. (Why?) Then $\det(C) = \det(AC') = \det(A) \det(C') = 0$.

4. Theorem (4).

Let A, B be $(n \times n)$ -square matrices. Suppose A is singular. Then det(AB) = 0 = det(A) det(B).

Proof of Theorem (4).

Let A, B be $(n \times n)$ -square matrices. Suppose A is singular. Then det(A) = 0. Therefore det(A) det(B) = 0. Since A is singular, AB is also singular. Then det(AB) = 0. Therefore det(AB) = 0 = det(A) det(B). 5. Combining Theorem (2) and Theorem (4), we obtain the result below:

Theorem (ζ) .

Suppose A, B are $(n \times n)$ -square matrices. Then det(AB) = det(A) det(B).

Remark. Actually it further follows that

 $\det(AB) = \det(A) \det(B) = \det(B) \det(A) = \det(BA).$

However, note that AB and BA are not necessarily the same matrix.

6. An immediate consequence of Theorem (ζ) is Theorem (η).

Theorem (η) .

Suppose A is an $(n \times n)$ -square matrix. Then the statements below hole: (a) For any positive integer p, $\det(A^p) = (\det(A))^p$.

(b) Suppose A is invertible. Then $det(A) \neq 0$, and $det(A^{-1}) = (det(A))^{-1}$.

7. Statement (b) in Theorem (η) tells us that if a square matrix is invertible then its determinant is non-zero.

It is natural to ask whether it is true that if the determinant of a square matrix is non-zero then the matrix concerned is invertible. The answer is provided by Theorem (5).

Theorem (5).

Let A be an $(n \times n)$ -square matrix. Suppose $det(A) \neq 0$. Then A is invertible.

Proof of Theorem (5).

Let A be an $(n \times n)$ -square matrix. Suppose $det(A) \neq 0$.

Denote by A' the reduced row-echelon form which is row-equivalent to A.

There exists some non-singular $(n \times n)$ -square matrix H such that A' = HA.

By Theorem
$$(\zeta)$$
, we have $\det(A') = \det(H) \det(A)$.

Since H is non-singular, we have $det(H) \neq 0$. By assumption, $det(A) \neq 0$.

Then $det(A') \neq 0$.

By assumption A' is a reduced row-echelon form. Since $det(A') \neq 0$, there is no row of A' which is a row of 0's. Then every row of A' contains a leading one.

Therefore $A' = I_n$.

Hence A is row equivalent to I_n . Then A is non-singular.

8. Combining Theorem (η) and Theorem (5), we obtain the result below:

Theorem (θ) .

Suppose A is an $(n \times n)$ -square matrix. Then the statements below are logically equivalent:

(a) A is non-singular.

(b) A is invertible.

(c) $\det(A) \neq 0$.

9. Corollary to Theorem (θ) .

Suppose A is an $(n \times n)$ -square matrix. Then the statements below are logically equivalent:

(a) A is singular.

(b) A is not invertible.

(c) $\det(A) = 0.$

10. We now compile and re-organized all the various re-formulations for the notions of nonsingularity and invertibility that we have learnt so far into one single result:

Theorem (ι). (Various re-formulations for the notions of non-singularity and invertibility.)

Let A be an $(n \times n)$ -matrix.

- (a) The statements below are logically equivalent:
 - i. A is non-singular.
 - ii. For any vector \mathbf{v} in \mathbb{R}^n , if $A\mathbf{v} = \mathbf{0}$ then $\mathbf{v} = \mathbf{0}$.
 - iii. The trivial solution is the only solution of the homogeneous system $\mathcal{LS}(A, \mathbf{0})$.
 - iv. A is row-equivalent to I_n .

v. A is invertible.

- vi. There exists some $(n \times n)$ -square matrix H such that $HA = I_n$.
- vii. There exists some $(n \times n)$ -square matrix G such that $AG = I_n$.
- viii. For any vector \mathbf{b} in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{b})$ has one and only one solution, namely, ' $\mathbf{x} = A^{-1}\mathbf{b}$ '.
- ix. For any vector \mathbf{c} in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{c})$ has at least one solution.
- x. For any vector \mathbf{d} in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{d})$ has at most one solution.

(b) The statements below are logically equivalent:

- i. A is non-singular.
- ii. A^t is non-singular.
- iii. For any vector \mathbf{v} in \mathbb{R}^n , if $A^t \mathbf{v} = \mathbf{0}$ then $\mathbf{v} = \mathbf{0}$.
- iv. The trivial solution is the only solution of the homogeneous system $\mathcal{LS}(A^t, \mathbf{0})$. v. A^t is row-equivalent to I_n .
- vi. A^t is invertible.
- vii. There exists some $(n \times n)$ -square matrix H such that $JA^t = I_n$.
- viii. There exists some $(n \times n)$ -square matrix G such that $A^t K = I_n$.
- ix. For any vector \mathbf{b} in \mathbb{R}^n , the system $\mathcal{LS}(A^t, \mathbf{b})$ has one and only one solution, namely, $\mathbf{x} = (A^t)^{-1} \mathbf{b}$.
- x. For any vector \mathbf{c} in \mathbb{R}^n , the system $\mathcal{LS}(A^t, \mathbf{c})$ has at least one solution.
- xi. For any vector \mathbf{d} in \mathbb{R}^n , the system $\mathcal{LS}(A^t, \mathbf{d})$ has at most one solution.

(c) Denote the *j*-th column of A by \mathbf{u}_j for each $j = 1, 2, \dots, n$. The statements below are logically equivalent:

i. A is non-singular.

ii. Every vector in \mathbb{R}^n is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$.

iii. $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are linearly independent.

iv. $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitute a basis for \mathbb{R}^n .

v. The dimension of the column space of A is n.

vi. The dimension of the null space of A is 0.

vii. $det(A) \neq 0$.

(d) Denote the *i*-th row of A by \mathbf{w}_i for each $i = 1, 2, \cdots, n$.

The statements below are logically equivalent:

i. A is non-singular.

ii. A^t is non-singular.

iii. Every vector in \mathbb{R}^n is a linear combination of $\mathbf{w}_1^t, \mathbf{w}_2^t, \cdots, \mathbf{w}_n^t$.

iv. $\mathbf{w}_1^t, \mathbf{w}_2^t, \cdots, \mathbf{w}_n^t$. are linearly independent.

v. $\mathbf{w}_1^t, \mathbf{w}_2^t, \cdots, \mathbf{w}_n^t$. constitute a basis for \mathbb{R}^n .

vi. The dimension of the row space of A is n.

vii. The dimension of the null space of A^t is 0. viii. $det(A^t) \neq 0$. (e) Now further suppose A is non-singular, with a sequence of row operations

[A]

$$A = C_1 \xrightarrow{\rho_1} C_2 \xrightarrow{\rho_2} \cdots \xrightarrow{\rho_{p-2}} C_{p-1} \xrightarrow{\rho_{p-1}} C_p = I_n,$$

and with H_k being the row-operation matrix corresponding to ρ_k for each k. Then $[I_n|A^{-1}]$ is the resultant of the application of the same sequence of row operations $\rho_1, \rho_2, \cdots, \rho_{p-1}$ starting from $[A|I_n]$:

$$|I_n] = [C_1|I_n] \xrightarrow{\rho_1} [C_2|H_1]$$

$$\xrightarrow{\rho_2} [C_3|H_2H_1]$$

$$\xrightarrow{\rho_2} \cdots \cdots$$

$$\xrightarrow{\rho_3} \cdots \cdots$$

$$\xrightarrow{\rho_{3-1}} [C_{p-1}|H_{p-2}\cdots H_2H_1]$$

$$\xrightarrow{\rho_{p-2-1}} [C_p|H_{p-1}\cdots H_2H_1] = [I_n|A^{-1}]$$

Moreover, A^{-1} and A are respectively given as products of row-operation matrices by $A^{-1} = H_{p-1} \cdots H_2 H_1, \qquad A = H_1^{-1} H_2^{-1} \cdots H_{p-1}^{-1}.$