1. Definition. (Diagonal matrix.)

Let D be a $(n \times n)$ -square matrix, whose (i, j)-th entry is denoted by d_{ij} .

The matrix D is said to be a diagonal matrix if and only if $d_{ij} = 0$ whenever $i \neq j$.

Remark on notation.

When $d_{11} = \alpha_1, d_{22} = \alpha_2, \dots, d_{nn} = \alpha_n$, we may write $D = \text{diag}(\alpha_1, \alpha_2, \dots, \alpha_n)$.

2. Definition. (Diagonalizability and diagonalization.)

Let A be an $(n \times n)$ -square matrix.

- (a) Suppose U is a non-singular $(n \times n)$ -square matrix. Then we say that $U^{-1}AU$ is a diagonalization of A if and only if $U^{-1}AU$ is a diagonal matrix.
- (b) A is said to be diagonalizable if and only if there is some non-singular $(n \times n)$ -square matrix T such that $T^{-1}AT$ is a diagonalization of A.

Remark. A diagonalizable matrix may have various diagonalization.

3. Recall the definition for the notions of eigenvalue and eigenvector from the handout Eigenvalues and eigenvectors:

Let A be an $(n \times n)$ -square matrix (with real entries). Let λ be a (real) number. Let \mathbf{v} be a non-zero vector with n (real) entries.

We say \mathbf{v} is an eigenvector of A with eigenvalue λ (or equivalently, λ is an eigenvalue of A with a corresponding eigenvector \mathbf{v}) if and only if $A\mathbf{v} = \lambda \mathbf{v}$.

4. Theorem (C).

Let A is an $(n \times n)$ -square matrix. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be vectors in \mathbb{R}^n , and $U = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n]$.

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitute a basis for \mathbb{R}^n . (So U is non-singular.)

Then the statements below are logically equivalent:

- (a) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$ respectively.
- (b) $U^{-1}AU$ is a diagonal matrix, given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$.

5. Corollary to Theorem (C).

Let A is an $(n \times n)$ -square matrix.

Suppose A has n pairwise distinct eigenvalues. Then A is diagonalizable.

Proof of Corollary to Theorem (C).

Each of the n eigenvalues of A will correspond to an eigenvector. Since the eigenvalues are pairwise distinct, the n corresponding eigenvectors will be linearly independent. They will then constitute a basis for \mathbb{R}^n .

6. Examples of diagonalizable matrices and their diagonalizations.

(a) Let
$$A = \begin{bmatrix} 13 & 30 \\ -6 & -14 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2$ are eigenvectors of A with respective eigenvalues 1, -2.

Since \mathbf{u}_1 , \mathbf{u}_2 are eigenvectors of A with distinct eigenvalues, they are linearly independent.

Then $\mathbf{u}_1, \mathbf{u}_2$ constitute a basis for \mathbb{R}^2 .

Define $U = [\mathbf{u}_1 | \mathbf{u}_2]$.

U is nonsingular, and $U^{-1} = \begin{bmatrix} 1 & 2 \\ -2 & -5 \end{bmatrix}$.

By direct verification, we see that $U^{-1}AU = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$, as expected from theory.

(b) Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are eigenvectors of A with respective eigenvalues 1, 2, 3.

Since $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are eigenvectors of A with pairwise distinct eigenvalues, they are linear independent.

Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for \mathbb{R}^3 .

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3]$.

U is nonsingular, and $U^{-1} = \begin{bmatrix} 1 & -1 & 1/2 \\ 0 & 1 & -2 \\ 0 & 0 & 1/2 \end{bmatrix}$.

By direct verification, we see that $U^{-1}AU = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, as expected from theory.

(c) Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are eigenvectors of A with respective eigenvalues 4, 1, 1. We can check that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linear independent. (Fill in the detail.) Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for \mathbb{R}^3 .

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3]$.

U is nonsingular, and $U^{-1} = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & -2/3 & 1/3 \\ 1/3 & 1/3 & -2/3 \end{bmatrix}$.

By direct verification, we see that $U^{-1}AU = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, as expected from theory.

(d) Let
$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 \\ -5 & 2 & 5 & -1 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 5 \\ -1 \\ -5 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 3 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -5 \\ -3 \\ 15 \end{bmatrix}$.

It happens that \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , \mathbf{u}_4 are eigenvectors of A with respective eigenvalues 1, -1, 3, -3. Since \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , \mathbf{u}_4 are eigenvectors of A with pairwise distinct eigenvalues, they are linear independent.

Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ constitute a basis for \mathbb{R}^4 .

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3 | \mathbf{u}_4].$

$$U \text{ is nonsingular, and } U^{-1} = \begin{bmatrix} 5/8 & -1/4 & 0 & -1/8 \\ 1/4 & 1/8 & -1/8 & 0 \\ 0 & 1/8 & 5/24 & 1/12 \\ 1/8 & 0 & -1/12 & 1/24 \end{bmatrix}.$$

By direct verification, we see that $U^{-1}AU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$, as expected from theory.

7. Non-examples on diagonalizability.

(a) Let b be a real number, and
$$A = \begin{bmatrix} b & 1 & 0 \\ 0 & b & 1 \\ 0 & 0 & b \end{bmatrix}$$
, and $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

u is an eigenvector of A with eigenvalue b, and every eigenvector of A is a non-zero scalar multiple of \mathbf{u} .

Then there is no basis for \mathbb{R}^3 which is constituted by eigenvectors of A. Therefore A is not diagonalizable.

(b) Let
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
.

A has no eigenvalues, and hence no eigenvectors.

Then there is no basis for \mathbb{R}^4 which is constituted by eigenvectors of A.

Therefore A is not diagonalizable.

8. Proof of Theorem (C).

Let A is an $(n \times n)$ -square matrix. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be vectors in \mathbb{R}^n , and $U = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n]$.

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitute a basis for \mathbb{R}^n .

• Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$ respectively.

[Reminder: We want to verify that a diagonalization for A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.]

Then for each $j = 1, 2, \dots, n$, we have $A\mathbf{u}_j = \lambda_j \mathbf{u}_j$.

Therefore

$$AU = \begin{bmatrix} A\mathbf{u}_1 | A\mathbf{u}_2 | \cdots | A\mathbf{u}_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \mathbf{u}_1 | \lambda_2 \mathbf{u}_2 | \cdots | \lambda_n \mathbf{u}_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 U \mathbf{e}_1 | \lambda_2 U \mathbf{e}_2 | \cdots | \lambda_n U \mathbf{e}_n \end{bmatrix}$$

$$= U \begin{bmatrix} \lambda_1 \mathbf{e}_1 | \lambda_2 \mathbf{e}_2 | \cdots | \lambda_n \mathbf{e}_n \end{bmatrix} = U \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$$

Since $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitutes a basis for \mathbb{R}^n , U is non-singular and invertible. The matrix U^{-1} is well-defined.

Then $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$, which is a diagonal matrix.

• Suppose $U^{-1}AU$ is a diagonal matrix, given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. [Reminder: We want to verify that for each j, \mathbf{u}_j is an eigenvector of A with eigenvalue λ_j .]

$$\begin{bmatrix} A\mathbf{u}_{1} | A\mathbf{u}_{2} | \cdots | A\mathbf{u}_{n} \end{bmatrix} = AU = U \operatorname{diag}(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n})
= U \left[\lambda_{1} \mathbf{e}_{1}^{(n)} | \lambda_{2} \mathbf{e}_{2}^{(n)} | \cdots | \lambda_{n} \mathbf{e}_{n}^{(n)} \right]
= \left[\lambda_{1} U \mathbf{e}_{1}^{(n)} | \lambda_{2} U \mathbf{e}_{2}^{(n)} | \cdots | \lambda_{n} U \mathbf{e}_{n}^{(n)} \right]
= \left[\lambda_{1} \mathbf{u}_{1} | \lambda_{2} \mathbf{u}_{2} | \cdots | \lambda_{n} \mathbf{u}_{n} \right]$$

Therefore, for each $j = 1, 2, \dots, n$, we have $A\mathbf{u}_j = \lambda_j \mathbf{u}_j$.

Then

Hence $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$ respectively.

9. **Lemma** (1).

Suppose A is an $(n \times n)$ -square matrix.

Then A is singular if and only if 0 is an eigenvalue of A.

Furthermore, if A is singular then every non-zero vector in $\mathcal{N}(A)$ is an eigenvector of A with eigenvalue 0.

Remark.

When $\dim(\mathcal{N}(A)) \geq 2$, we do not expect any two arbitrary non-zero vectors in $\mathcal{N}(A)$ to be scalar multiples of each other. This result reminds us that we should not expect eigenvectors corresponding to the same eigenvalue of A to be non-zero scalar multiples of each other.

10. **Lemma** (2).

Let A be an $(n \times n)$ -square matrix.

Suppose λ is a real number. Then the statements below hold:

- (a) λ is an eigenvalue of A if and only if $A \lambda I_n$ is singular.
- (b) Now suppose λ is an eigenvalue of A indeed.

Then for any non-zero vector \mathbf{x} in \mathbb{R}^n , \mathbf{x} is an eigenvector of A with eigenvalue λ if and only if $\mathbf{x} \in \mathcal{N}(A - \lambda I_n)$.

11. Definition. (Eigenspace.)

Let A be an $(n \times n)$ -square matrix.

Suppose λ be an eigenvalue of A.

Then $\mathcal{N}(A - \lambda I_n)$ is called the eigenspace of A with eigenvalue λ .

It is denoted by $\mathcal{E}_A(\lambda)$.

The dimension of $\mathcal{E}_A(\lambda)$ is called the geometric multiplicity of the eigenvalue λ of A.

12. **Theorem** (**D**).

Let A is an $(n \times n)$ -square matrix.

Suppose $\lambda_1, \lambda_2, \dots, \lambda_p$ are all the eigenvalues of A, pairwise distinct.

Then the statements below are logically equivalent:

- (a) A is diagonalizable.
- (b) The sum of the respective geometric multiplicities of $\lambda_1, \lambda_2, \dots, \lambda_p$, as eigenvalues of A, equals n.

Now suppose A is indeed diagaonalizable.

For each $k = 1, 2, \dots, p$, write $\dim(\mathcal{E}_A(\lambda_k)) = n_k$, and suppose that $\mathbf{v}_{k,1}, \mathbf{v}_{k,2}, \dots, \mathbf{v}_{k,n_k}$ constitute a basis for $\mathcal{E}_A(\lambda_k)$. Then a basis for \mathbb{R}^n is constituted by

$$\mathbf{v}_{1,1}, \mathbf{v}_{1,2}, \cdots, \mathbf{v}_{1,n_1}, \ \mathbf{v}_{2,1}, \mathbf{v}_{2,2}, \cdots, \mathbf{v}_{2,n_2}, \ \vdots \ \mathbf{v}_{p,1}, \mathbf{v}_{p,2}, \cdots, \mathbf{v}_{p,n_p}.$$

Proof. Omitted. (The argument is not difficult at a conceptual level; we can certainly give it within the context of this course. However it will be tedious unless we introduce the notion of *direct sum*.)

13. Illustration of the content of Theorem (D).

(a) Let
$$A = \begin{bmatrix} 13 & 30 \\ -6 & -14 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2$ are eigenvectors of A with respective eigenvalues 1, -2.

The only eigenspaces of A are $\mathcal{E}_A(1)$, $\mathcal{E}_A(-2)$.

The dimension of $\mathcal{E}_A(1)$ is 1, with a basis given by \mathbf{u}_1 .

The dimension of $\mathcal{E}_A(-2)$ is 1, with a basis given by \mathbf{u}_2 .

Since $\dim(\mathcal{E}_A(1)) + \dim(\mathcal{E}_A(-2)) = 2 = \dim(\mathbb{R}^2)$, A is expected to be diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \text{diag}(1, -2)$, in which $U = [\mathbf{u}_1 | \mathbf{u}_2]$.

(b) Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are eigenvectors of A with respective eigenvalues 1, 2, 3.

The only eigenspaces of A are $\mathcal{E}_A(1)$, $\mathcal{E}_A(2)$, $\mathcal{E}_A(3)$.

The dimension of $\mathcal{E}_A(1)$ is 1, with a basis given by \mathbf{u}_1 .

The dimension of $\mathcal{E}_A(2)$ is 1, with a basis given by \mathbf{u}_2 .

The dimension of $\mathcal{E}_A(3)$ is 1, with a basis given by \mathbf{u}_3 .

Since $\dim(\mathcal{E}_A(1)) + \dim(\mathcal{E}_A(2)) + \dim(\mathcal{E}_A(3)) = 3 = \dim(\mathbb{R}^3)$, A is expected to be diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \text{diag}(1,2,3)$, in which $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3]$.

(c) Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are eigenvectors of A with respective eigenvalues 4, 1, 1.

The only eigenspaces of A are $\mathcal{E}_A(4)$, $\mathcal{E}_A(1)$.

The dimension of $\mathcal{E}_A(4)$ is 1, with a basis given by \mathbf{u}_1 .

The dimension of $\mathcal{E}_A(1)$ is 2, with a basis given by $\mathbf{u}_2, \mathbf{u}_3$.

Since $\dim(\mathcal{E}_A(4)) + \dim(\mathcal{E}_A(1)) = 3 = \dim(\mathbb{R}^3)$, A is expected to be diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \text{diag}(4,1,1)$, in which $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3]$.

(d) Let
$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 \\ -5 & 2 & 5 & -1 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 5 \\ -1 \\ -5 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 3 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -5 \\ -3 \\ 15 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are eigenvectors of A with respective eigenvalues 1, -1, 3, -3.

The only eigenspaces of A are $\mathcal{E}_A(1)$, $\mathcal{E}_A(-1)$, $\mathcal{E}_A(3)$, $\mathcal{E}_A(-3)$.

The dimension of $\mathcal{E}_A(1)$ is 1, with a basis given by \mathbf{u}_1 .

The dimension of $\mathcal{E}_A(-1)$ is 1, with a basis given by $\mathbf{u}_2, \mathbf{u}_3$.

The dimension of $\mathcal{E}_A(3)$ is 1, with a basis given by \mathbf{u}_3 .

The dimension of $\mathcal{E}_A(-3)$ is 1, with a basis given by $\mathbf{u}_4, \mathbf{u}_3$.

Since $\dim(\mathcal{E}_A(1)) + \dim(\mathcal{E}_A(-1)) + \dim(\mathcal{E}_A(3)) + \dim(\mathcal{E}_A(-3)) = 4 = \dim(\mathbb{R}^4)$, A is expected to be diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \text{diag}(1, -1, 3, -3)$, in which $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3 | \mathbf{u}_4]$

(e) Let b be a real number, and $A = \begin{bmatrix} b & 1 & 0 \\ 0 & b & 1 \\ 0 & 0 & b \end{bmatrix}$, and $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

b is the only eigenvalue of A, and and every eigenvector of A is a non-zero scalar multiple of \mathbf{u} .

The only eigenspace of A is $\mathcal{E}_{A}(b)$, which is of dimension 1.

Therefore A is not diagonalizable.

(f) Let
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
.

A has no eigenvalues, and hence no eigenspace.

Therefore A is not diagonalizable.

14. **Theorem (3).**

Let A be an $(n \times n)$ -square matrix.

Suppose A is diagonalizable, with a diagonalization $U^{-1}AU = D$, for some non-singular $(n \times n)$ -square matrix U and for some $(n \times n)$ -diagonal matrix D.

Then the statements below hold:

- (a) For each positive integer p, A^p is diagonalizable, with a diagonalization given by $U^{-1}A^pU = D^p$.
- (b) Suppose A is non-singular. Then D is non-singular, and A^{-1} is diagonalizable, with a diagonalization given by $U^{-1}A^{-1}U = D^{-1}$.

Proof of Theorem (3). Exercise.

Remark. This result tells us that when A is diagonalizable, it will be easy to find its positive powers. (Why? Because it is easy to find the positive powers of a diagonal matrix.)