1. Recall the definition for the notion of basis for a subspace of \mathbb{R}^n .

Let V be a subspace of \mathbb{R}^n .

We declare that if V is the zero subspace of \mathbb{R}^n then the empty set is the basis for V.

From now on suppose V is not the zero subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are vectors in V.

The vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p$ are said to constitute a basis for V (or the set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is said to be a basis for V) if and only if both of the statements (BL), (BS) below hold:

- (BL) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent.
- (BS) Every vector in V is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$.

Also recall Theorem (B) below, from the handout Bases for subspaces of \mathbb{R}^n :

Any two bases for a subspace of \mathbb{R}^n have the same number of vectors.

Further recall Theorem (C) below, from the handout Bases for subspaces of \mathbb{R}^n :

Suppose V is a non-zero subspace of \mathbb{R}^n . Then V has a basis which consists of at least one and at most n vectors in \mathbb{R}^n .

They combine to make sense of the definition for the notion of dimension, introduced below.

2. Definition. (Dimension.)

Let V be a subspace of \mathbb{R}^n .

When V is not the zero subspace of \mathbb{R}^n , the number of vectors in a basis for V is called the dimension of V. When this number is p, we write $\dim(V) = p$, and we refer to V as a p-dimensional subspace of \mathbb{R}^n .

We declare the dimension of the zero subspace of \mathbb{R}^n to be 0.

Remark. By definition, when V is a subspace of \mathbb{R}^n , it happens that $\dim(V) \leq n$. (Why? A basis for V is necessarily a collection of linearly independent vectors in \mathbb{R}^n ; there are at most n vectors in such a collection.)

3. Theorem (1).

 \mathbb{R}^n is an *n*-dimensional subspace of \mathbb{R}^n .

Proof of Theorem (1).

The *n* vectors $\mathbf{e}_1^{(n)}, \mathbf{e}_2^{(n)}, \cdots, \mathbf{e}_n^{(n)}$ constitute a basis for \mathbb{R}^n .

4. Examples.

(a) Let
$$A = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6 \end{bmatrix}$$
, and $V = \mathcal{N}(A)$.

After some work, we find that a basis for V is constituted by the vector \mathbf{u} , in which $\mathbf{u} = \begin{bmatrix} -2 \\ 3 \\ -4 \end{bmatrix}$.

Then $\dim(V) = 1$.

(b) Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 1 & 5 & -7 & 1 \end{bmatrix}$$
, and $V = \mathcal{N}(A)$.

After some work, we find that a basis for V is constituted by the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$, in which $\mathbf{u}_1 = \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$,

1

$$\mathbf{u}_2 = \begin{bmatrix} 3\\-2\\0\\1\\0 \end{bmatrix}, \, \mathbf{u}_3 = \begin{bmatrix} 1\\-4\\0\\0\\1 \end{bmatrix}.$$

Hence $\dim(V) = 3$.

(c) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 4 \\ 2 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -1 \\ 4 \\ 1 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}$, and $V = \mathsf{Span} \ (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\})$.

After some work, we find that a basis for V is constituted by $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$. Hence $\dim(V) = 3$.

(d) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1\\2\\7\\1\\-1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1\\1\\3\\1\\0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 3\\2\\5\\-1\\9 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 1\\-1\\-5\\2\\0 \end{bmatrix}$ and $V = \mathsf{Span}\;(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}).$

After some work, we find that a basis for V is constituted by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$, in which $\mathbf{t}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 3 \end{bmatrix}, \mathbf{t}_2 = \begin{bmatrix} 0 \\ 1 \\ 4 \\ 0 \\ -1 \end{bmatrix}$,

$$\mathbf{t}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -2 \end{bmatrix}.$$

Hence $\dim(V) = 3$.

5. Recall the Replacement Theorem (Theorem (F)) from the handout More on minimal spanning set:

Let W be a subspace of \mathbb{R}^n .

Let $\mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_p, \mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q$ be vectors in W. Suppose none of these vectors is the zero vector.

Suppose $\mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_p$ are linearly independent.

Further suppose $\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q$ constitute a basis for W.

Then, $q \ge p$, and there is a basis for W which is constituted by $\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_p$ together with some q - p vectors from amongst $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_q$.

A consequence of this result is Theorem (2).

6. Theorem (2).

 \mathbb{R}^n is the only n-dimensional subspace of \mathbb{R}^n .

Proof of Theorem (2).

[We are going to prove the statement 'if V is an n-dimensional subspace of \mathbb{R}^n then $V = \mathbb{R}^n$.']

Let V be a subspace of \mathbb{R}^n . Suppose that $\dim(V) = n$.

There is some basis with n vectors in V, say, $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$. They are n linearly independent vectors in \mathbb{R}^n .

Note that $\mathbf{e}_1^{(n)}, \mathbf{e}_2^{(n)}, \cdots, \mathbf{e}_n^{(n)}$ constitute some basis for \mathbb{R}^n .

Then by the Replacement Theorem, $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$, together with possibly some vectors from amongst $\mathbf{e}_1^{(n)}, \mathbf{e}_2^{(n)}, \cdots, \mathbf{e}_n^{(n)}$, constitute a basis for \mathbb{R}^n .

However, since $\dim(\mathbb{R}^n) = n$, the *n* vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ already constitute a basis for \mathbb{R}^n .

It follows that $\mathbb{R}^n = \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}) = V$.

Remark. This argument can be generalized to give an important theoretical tool with wide applications. See the handout *Inequalities on dimension*.

7. Recall Theorem (G) from the handout More on minimal spanning set:

Let W be a non-zero subspace of \mathbb{R}^n , and $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be vectors in W.

Further suppose that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent.

Then, there is some basis for W, which is constituted of at most n vectors, amongst them being the vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$.

According to this result, whenever we have k linearly independent vectors in a subspace, say, W, of \mathbb{R}^n , these k vectors will be part of a basis for W. Then it is necessary for W to have dimension at least k.

Out of this discussion, we obtain Theorem (H) below.

8. Theorem (H).

Let W be a p-dimensional subspace of \mathbb{R}^n , and $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ be vectors in W.

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly independent. Then $k \leq p$.

Proof of Theorem (H).

By assumption there is some basis for W which is constituted by p vectors in W, amongst them being these k vectors. Then $k \leq p$.

Remark. This is a generalization of the result below, from the handout *Linear dependence* and *linear independence*:

Let $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_\ell$ be vectors in \mathbb{R}^m . Suppose $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_\ell$ are linearly independent. Then $\ell \leq m$.

9. According to logic, Theorem (H) is saying the same thing as Corollary to Theorem (H) below:

Corollary to Theorem (H).

Any p+1 or more vectors in a p-dimensional subspace of \mathbb{R}^n are linearly dependent.