1. Recall the definition for the notion transpose of a matrix from the handout Miscellanies on matrices:

Let A be an $(m \times n)$ -matrix, whose (i, j)-th entry is denoted by a_{ij} .

The $(n \times m)$ -matrix whose (k, ℓ) -th entry is given by $a_{\ell k}$ is called the transpose of A, and is denoted by A^t .

$$(So\ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \text{ whereas } A^t = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ a_{13} & a_{23} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}.)$$

2. Theorem (α). (Basic properties of transpose.)

The statements below hold:

- (a) Suppose A, B are $(m \times n)$ -matrices. Then $(A + B)^t = A^t + B^t$.
- (b) Suppose A is an $(m \times n)$ -matrix, and α is a real number. Then $(\alpha A)^t = \alpha A^t$.
- (c) Suppose A is an $(m \times n)$ -matrix, and B is an $(n \times p)$ -matrix. Then $(AB)^t = B^t A^t$.
- (d) Suppose A is an $(m \times n)$ -matrix. Then $(A^t)^t = A$.

Proof of Theorem (α). Exercise. (It is necessary to go back to the definition for equalities between matrices in terms of equalities between respective entries.)

3. Theorem (β). (Transpose and nonsingularity.)

Let A be an $(n \times n)$ -square matrix.

Suppose A is non-singular and invertible.

Then A^t is non-singular and invertible, and the matrix inverse of A^t is given by $(A^t)^{-1} = (A^{-1})^t$.

4. Proof of Theorem (β).

Let A be an $(n \times n)$ -square matrix. Suppose A is non-singular and invertible.

By assumption, the matrix inverse of A is well-defined. Write $B = A^{-1}$.

By definition, $BA = I_n$ and $AB = I_n$.

Then
$$B^t A^t = (AB)^t = I_n^t = I_n$$
.

Also,
$$A^t B^t = (BA)^t = I_n^{\ t} = I_n$$
.

Therefore, by definition, A^t is non-singular and invertible, and the matrix inverse of A^t is given by $(A^t)^{-1} = B^t = (A^{-1})^t$.

5. Definition. (Row space of a matrix.)

Let G be an $(m \times n)$ -matrix.

The row space of G is defined to be the column space of the $(n \times m)$ -matrix G^t . It is denoted by $\mathcal{R}(G)$.

Remark. Denote the rows of
$$G$$
, from top to bottom, by $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_m$. (So $G = \begin{bmatrix} \frac{\mathbf{g}_1}{\mathbf{g}_2} \\ \vdots \\ \frac{\mathbf{g}_m}{\mathbf{g}_m} \end{bmatrix}$.)

Then, according to the 'dictionary' between the notions of span and column space, we have $\mathcal{R}(G) = \mathcal{C}(G^t) = \operatorname{Span}(\{\mathbf{g}_1^t, \mathbf{g}_2^t, \cdots, \mathbf{g}_m^t\})$.

1

6. Lemma (γ) .

Suppose H is an $(n \times p)$ -matrix, and B is a non-singular $(p \times p)$ -matrix. Then $\mathcal{C}(HB) = \mathcal{C}(H)$.

Remark. The conclusion in Lemma (γ) is a set equality, which reads:

Both (†) and (‡) below hold:

- (†) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathcal{C}(HB)$ then $\mathbf{y} \in \mathcal{C}(H)$.
- (‡) For any $\mathbf{z} \in \mathbb{R}^p$, if $\mathbf{z} \in \mathcal{C}(H)$ then $\mathbf{z} \in \mathcal{C}(HB)$.

7. Proof of Lemma (γ) .

Suppose H is an $(n \times p)$ -matrix, and B is a non-singular $(p \times p)$ -matrix.

• Pick any $\mathbf{y} \in \mathbb{R}^n$. Suppose $\mathbf{y} \in \mathcal{C}(HB)$.

By definition, there exists some $\mathbf{s} \in \mathbb{R}^p$ such that $\mathbf{y} = (HB)\mathbf{s}$.

[We want to verify $\mathbf{y} \in \mathcal{C}(H)$.

We are in fact trying to verify that there is some $\mathbf{u} \in \mathbb{R}^p$ for which the equality $\mathbf{y} = H\mathbf{u}$ holds.

Ask: Can we name such a vector \mathbf{u} ? How about naming \mathbf{u} as $B\mathbf{s}$?

Take $\mathbf{u} = B\mathbf{s}$. By definition, $\mathbf{u} \in \mathbb{R}^p$.

Also,
$$\mathbf{y} = (HB)\mathbf{s} = H(B\mathbf{s}) = H\mathbf{u}$$
.

Then, by definition, $\mathbf{y} \in \mathcal{C}(H)$.

• Pick any $\mathbf{z} \in \mathbb{R}^n$. Suppose $\mathbf{z} \in \mathcal{C}(H)$.

By definition, there exists some $\mathbf{t} \in \mathbb{R}^p$ such that $\mathbf{z} = H\mathbf{t}$.

[We want to verify $\mathbf{z} \in \mathcal{C}(HB)$.

We are in fact trying to verify that there is some $\mathbf{v} \in \mathbb{R}^p$ for which the equality $\mathbf{z} = (HB)\mathbf{v}$ holds.

Ask: Can we name such a vector \mathbf{v} ? How about naming \mathbf{v} as $B^{-1}\mathbf{t}$?

Take $\mathbf{v} = B^{-1}\mathbf{t}$. By definition, $\mathbf{v} \in \mathbb{R}^p$.

Also,
$$\mathbf{z} = H\mathbf{t} = H(I_p\mathbf{t}) = H[(BB^{-1})\mathbf{t}] = H[B(B^{-1}t)] = H(B\mathbf{v}) = (HB)\mathbf{v}.$$

Then, by definition, $\mathbf{z} \in \mathcal{C}(HB)$.

It follows that C(H) = C(HB).

8. Theorem (δ) .

Suppose G is an $(m \times n)$ -matrix, and A is a non-singular $(m \times m)$ -matrix. Then $\mathcal{R}(AG) = \mathcal{R}(G)$.

Proof of Theorem (δ) .

Suppose G is an $(m \times n)$ -matrix, and A is a non-singular $(m \times m)$ -matrix.

Note that A^t is a non-singular $(m \times m)$ -matrix.

Then
$$\mathcal{R}(AG) = \mathcal{C}((AG)^t) = \mathcal{C}(G^tA^t) = \mathcal{C}(G^t) = \mathcal{R}(G)$$
.

Remark. In plain words, this result is saying that

the row space of a matrix is preserved upon multiplication of a non-singular square matrix from the left to matrix.

When we think in terms of row operations, this result is saying that

the row space of a matrix is preserved upon the application of row operations on the matrix.

9. Theorem (ε) .

Suppose G is an $(m \times n)$ -matrix, and \hat{G} is the reduced row-echelon form which is row-equivalent to G. Then the statements below hold:

(a)
$$\mathcal{R}(\hat{G}) = \mathcal{R}(G)$$
.

(b) Denote the rank of \hat{G} by r. Suppose r > 0.

Denote the top r rows of \hat{G} by $\hat{\mathbf{g}}_1, \hat{\mathbf{g}}_2, \cdots, \hat{\mathbf{g}}_r$.

Then $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ constitute a basis for $\mathcal{R}(G)$.

10. Proof of Theorem (ε).

Suppose G is an $(m \times n)$ -matrix, and \hat{G} is the reduced row-echelon form which is row-equivalent to G.

(a) There exists some non-singular $(m \times m)$ -square matrix A such that $\hat{G} = AG$.

Then
$$\mathcal{R}(\hat{G}) = \mathcal{R}(AG) = \mathcal{R}(G)$$
.

(b) Denote the rank of \hat{G} by r. Suppose r > 0.

Denote the top r rows of \hat{G} by $\hat{\mathbf{g}}_1, \hat{\mathbf{g}}_2, \cdots, \hat{\mathbf{g}}_r$.

Note that the bottom m-r rows of \hat{G} are rows of zeros. Their respective transposes are the zero vector in \mathbb{R}^n .

We verify that $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \dots, \hat{\mathbf{g}}_r^t$ constitute a basis for $\mathcal{R}(\hat{G})$:

• We have
$$\mathcal{R}\Big(\hat{G}\Big) = \mathcal{C}\Big(\hat{G}^t\Big) = \operatorname{Span}\left(\{\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t, \underbrace{\mathbf{0}_n, \mathbf{0}_n, \cdots, \mathbf{0}_n}_{m-r \text{ copies}}\}\right) = \operatorname{Span}\left(\{\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t\}\right).$$

• [We want to verify that $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \dots, \hat{\mathbf{g}}_r^t$ are linearly independent.] Label the pivot columns of \hat{G} , from left to right, by d_1, d_2, \dots, d_r . Then by definition, for each $i = 1, 2, \dots, r$ and $j = 1, 2, \dots, r$, the j-th entry c_{ij} of $\hat{\mathbf{g}}_i^t$ is given by

$$c_{ij} = \begin{cases} 1 & \text{if} & i = j \\ 0 & \text{if} & i \neq j \end{cases}$$

Pick any $\alpha_1, \alpha_2, \dots, \alpha_r \in \mathbb{R}$. Suppose $\alpha_1 \hat{\mathbf{g}}_1^t + \alpha_2 \hat{\mathbf{g}}_2^t + \dots + \alpha_r \hat{\mathbf{g}}_r^t = \mathbf{0}_n$.

For each $j = 1, 2, \dots, r$, the j-th entry of the vector $\alpha_1 \hat{\mathbf{g}}_1^t + \alpha_2 \hat{\mathbf{g}}_2^t + \dots + \alpha_r \hat{\mathbf{g}}_r^t$ is given by $\alpha_1 c_{1j} + \alpha_2 c_{2j} + \dots + \alpha_r c_{rj} = \alpha_j$.

The *j*-th entry of $\mathbf{0}_n$ is 0.

Then $\alpha_j = 0$.

Hence $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ are linearly independent.

It follows that $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ constitute a basis for $\mathcal{R}(\hat{G})$. Hence they also constitute a basis for $\mathcal{R}(G)$.

11. Theorem (ε) suggests another method for determining a basis for the span of several vectors (which is different from the method described in the handout *Minimal spanning set*).

'Algorithm' associated with Theorem (ε).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be non-zero vectors in \mathbb{R}^n .

We proceed to determine a basis for Span $(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\})$ as described below:

• Step (1).

Form the
$$(p \times n)$$
-matrix $G = \begin{bmatrix} \frac{\mathbf{u_1}^t}{\mathbf{u_2}^t} \\ \vdots \\ \mathbf{u_p}^t \end{bmatrix}$.

• Step (2).

Obtain the reduced row-echelon form \hat{G} which is row equivalent to G.

• Step (3).

Denote the rank of \hat{G} by r.

(Since G is not the zero matrix, \hat{G} is not the zero matrix. The rank of \hat{G} will be at least 1.)

Denote the top r rows of \hat{G} by $\hat{\mathbf{g}}_1, \hat{\mathbf{g}}_2, \cdots, \hat{\mathbf{g}}_r$.

 $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ constitute a basis for Span $(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\})$.

12. Illustrations.

(a) Let
$$\mathbf{u}_1 = \begin{bmatrix} 7 \\ 6 \\ 12 \\ 33 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 5 \\ 5 \\ 7 \\ 24 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ 4 \\ 5 \end{bmatrix}$, and $V = \mathsf{Span} \ (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$.

We want to obtain a basis for V.

Define
$$G = \begin{bmatrix} \mathbf{u}_1^t \\ \mathbf{u}_2^t \\ \mathbf{u}_3^t \end{bmatrix}$$
.

We find the reduced row-echelon form \hat{G} which is row equivalent to G:

$$G = \left[\begin{array}{cccc} 7 & 6 & 12 & 33 \\ 5 & 5 & 7 & 24 \\ 1 & 0 & 4 & 5 \end{array} \right] \longrightarrow \cdots \longrightarrow \hat{G} = \left[\begin{array}{cccc} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 2 \end{array} \right].$$

3

The rank of \hat{G} is 3. For each i, denote the transpose of the i-th row of \hat{G} by \mathbf{t}_i .

We have
$$\mathbf{t}_1 = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$$
, $\mathbf{t}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 5 \end{bmatrix}$, $\mathbf{t}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$.

A basis for V is constituted by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$.

(b) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1\\2\\7\\1\\-1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1\\1\\3\\1\\0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 3\\2\\5\\-1\\9 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 1\\-1\\-5\\2\\0 \end{bmatrix}$ and $V = \mathsf{Span}\;(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}).$

We want to obtain a basis for V.

Define
$$G = \begin{bmatrix} \frac{\mathbf{u}_1^t}{\mathbf{u}_2^t} \\ \frac{\mathbf{u}_3^t}{\mathbf{u}_4^t} \end{bmatrix}$$
.

We find the reduced row-echelon form \hat{G} which is row equivalent to G:

$$G = \left[\begin{array}{ccccc} 1 & 2 & 7 & 1 & -1 \\ 1 & 1 & 3 & 1 & 0 \\ 3 & 2 & 5 & -1 & 9 \\ 1 & -1 & -5 & 2 & 0 \end{array} \right] \longrightarrow \cdots \cdots \longrightarrow \hat{G} = \left[\begin{array}{ccccc} 1 & 0 & -1 & 0 & 3 \\ 0 & 1 & 4 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right].$$

The rank of \hat{G} is 3. For each i, denote the transpose of the i-th row of \hat{G} by \mathbf{t}_{i} .

We have
$$\mathbf{t}_1 = \begin{bmatrix} 1\\0\\-1\\0\\3 \end{bmatrix}$$
, $\mathbf{t}_2 = \begin{bmatrix} 0\\1\\4\\0\\-1 \end{bmatrix}$, $\mathbf{t}_3 = \begin{bmatrix} 0\\0\\0\\1\\-2 \end{bmatrix}$.

A basis for V is constituted by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$.

(c) Let
$$\mathbf{u}_1 = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 3 \\ 5 \\ -7 \\ 12 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \\ -1 \\ 0 \\ -2 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 2 \\ -4 \\ -1 \\ 3 \\ 2 \\ 1 \\ 5 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 3 \\ -6 \\ -1 \\ 5 \\ 4 \\ 0 \\ 10 \end{bmatrix}$ and $V = \text{Span } (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\})$.

We want to obtain a basis for V

Define
$$G = \begin{bmatrix} \frac{\mathbf{u}_1^t}{\mathbf{u}_2^t} \\ \frac{\mathbf{u}_3^t}{\mathbf{u}_4^t} \end{bmatrix}$$
.

We find the reduced row-echelon form \hat{G} which is row equivalent to G:

The rank of \hat{G} is 3. For each i, denote the transpose of the i-th row of \hat{G} by \mathbf{t}_{i} .

We have
$$\mathbf{t}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{t}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ -2 \\ 3 \end{bmatrix}$, $\mathbf{t}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1 \\ 2 \end{bmatrix}$.

A basis for V is constituted by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$.