1. Recall an observation from the handout *Homogeneous systems and null spaces*:

Suppose we are given an $(m \times n)$ matrix B.

To determine $\mathcal{N}(B)$ is the same as giving an 'explicit' description of the solution set of the homogeneous system $\mathcal{LS}(B, \mathbf{0})$ through set language, in terms of (hopefully just a few) solutions of the system. That amounts to finding all solutions of $\mathcal{LS}(B, \mathbf{0})$.

In practice, this is what we proceed with the above:

Suppose B' is the reduced row-echelon form which is row-equivalent to B.

Suppose the rank of B' is r. Write k = n - r.

When k = 0, $\mathcal{N}(B) = \{0\}$.

Suppose k > 0. Then those (few) solutions $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ of $\mathcal{LS}(B, \mathbf{0})$ needed for expressing all solutions of $\mathcal{LS}(B, \mathbf{0})$ are 'read off' as solutions of $\mathcal{LS}(B', \mathbf{0})$ for which one free variable takes the value 1 and all other free variable take the value 0.

In conclusion we have

$$\mathcal{N}(B) = \mathcal{N}(B')$$

$$= \{c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\} = \mathsf{Span} \ (\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}).$$

A natural follow-up question is: can this process be reversed? (And in what sense can this be reversed?)

2. Question.

Suppose we are given a collection of vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ in \mathbb{R}^n .

Can we express

$$\mathsf{Span}\;(\{\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_q\})$$

as the null space of some appropriate matrix with n columns?

Answer.

The answer is 'yes', and will be provided by Theorem (M).

Remark.

Hence, the null space of a matrix is the span of some vectors, while the span of several vectors is the null space of some matrix.

The notions of $null\ space,\ span,\ column\ space$ are manifestations of the same mathematical concept.

3. Theorem (M).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q \in \mathbb{R}^n$, and $U = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_q]$.

Denote by U' the reduced row-echelon form which is row-equivalent to U.

Denote the rank of U' by r, and suppose 0 < r < q. Write p = n - r.

Suppose A is a non-singular and invertible $(n \times n)$ -matrix which satisfies U' = AU.

Denote by A_{\natural} the $(p \times n)$ -matrix constituted by the bottom p rows of A.

Then Span
$$(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q\}) = \mathcal{C}(U) = \mathcal{N}(A_{\natural}).$$

Remarks on the statement of Theorem (M).

- (a) Theorem (M) is meaningful (and useful) because of the validity of the result (**) below from the handout Row equivalence in terms of multiplication by non-singular and invertible matrices:
 - (\star) Let C, D be $(n \times q)$ -matrices.

The statements below are logically equivalent:

- i. C is row-equivalent to D.
- ii. There exists some non-singular and invertible $(n \times n)$ -square matrix A such that D = AC.
- (b) Theorem (M) is formulated in such a way to avoid the complications in having to cover the 'extreme cases' r = 0, r = n within the statement.
 - i. When r = 0, we have $U = \mathcal{O}_{n \times q}$ and $\mathcal{C}(U) = \{\mathbf{0}_n\} = \mathcal{N}(I_n)$.
 - ii. When r = n, we have $\mathcal{C}(U) = \mathcal{C}(I_n) = \mathbb{R}^n = \mathcal{N}(\mathcal{O}_{1 \times n})$.

4. Proof of Theorem (M).

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_q \in \mathbb{R}^n$, and $U = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_q]$. We have Span $(\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_q\}) = \mathcal{C}(U)$.

Denote by U' the reduced row-echelon form which is row-equivalent to U.

Denote the rank of U' by r, and suppose 0 < r < q. Write p = n - r.

Suppose A is a non-singular and invertible $(n \times n)$ -matrix which satisfies U' = AU.

Denote by A_{\natural} the $(p \times n)$ -matrix constituted by the bottom p rows of A.

Denote by $A_{\scriptscriptstyle \parallel}$ the $(r \times n)$ -matrix constituted by the top r rows of A.

So

$$A = \left\lceil \frac{A_{\sharp}}{A_{\mathsf{h}}} \right
ceil.$$

Denote by U'_{\sharp} the $(r \times q)$ -matrix constituted by the top r rows of U'.

So

$$U' = \left[\frac{U'_{\sharp}}{\mathcal{O}_{p \times q}} \right].$$

We want to verify that $\mathcal{C}(U) = \mathcal{N}(A_{\natural})$.

• [We verify that every vector in $\mathcal{C}(U)$ belongs to $\mathcal{N}\Big(A_{\natural}\Big)$.

This amounts to verify the statement 'For any $\mathbf{t} \in \mathbb{R}^n$, if $\mathbf{t} \in \mathcal{C}(U)$ then $\mathbf{t} \in \mathcal{N}(A_{\natural})$ '.]

Pick any $\mathbf{t} \in \mathbb{R}^n$.

Suppose $\mathbf{t} \in \mathcal{C}(U)$. Then there exists some $\mathbf{z} \in \mathbb{R}^q$ such that $\mathbf{t} = U\mathbf{z}$.

We have

$$\begin{bmatrix} U_{\sharp}'\mathbf{z} \\ \overline{\mathbf{0}_{p}} \end{bmatrix} = \begin{bmatrix} U_{\sharp}'\mathbf{z} \\ \overline{\mathcal{O}_{p\times q}}\mathbf{z} \end{bmatrix} = \begin{bmatrix} U_{\sharp}' \\ \overline{\mathcal{O}_{p\times q}} \end{bmatrix}\mathbf{z} = U'\mathbf{z} = AU\mathbf{z} = A\mathbf{t} = \begin{bmatrix} A_{\sharp} \\ \overline{A_{\sharp}} \end{bmatrix}\mathbf{t} = \begin{bmatrix} A_{\sharp}\mathbf{t} \\ \overline{A_{\sharp}}\mathbf{t} \end{bmatrix}.$$

Then $A_{\natural}\mathbf{t} = \mathbf{0}_{p}$.

Therefore $\mathbf{t} \in \mathcal{N}(A_{\natural})$.

• [We verify that every vector in $\mathcal{N}\Big(A_{\scriptscriptstyle
abla}\Big)$ belongs to $\mathcal{C}(U)$.

This amounts to verify the statement 'For any $\mathbf{t} \in \mathbb{R}^n$, if $\mathbf{t} \in \mathcal{N}(A_{\sharp})$ then $\mathbf{t} \in \mathcal{C}(U)$ '.]

Pick any $\mathbf{t} \in \mathbb{R}^n$.

Suppose $\mathbf{t} \in \mathcal{N}(A_{\natural})$. Then $A_{\natural}\mathbf{t} = \mathbf{0}_{p}$.

We have
$$A\mathbf{t} = \begin{bmatrix} A_{\sharp} \\ A_{\natural} \end{bmatrix} \mathbf{t} = \begin{bmatrix} A_{\sharp}\mathbf{t} \\ A_{\natural}\mathbf{t} \end{bmatrix} = \begin{bmatrix} A_{\sharp}\mathbf{t} \\ \mathbf{0}_p \end{bmatrix}$$
.

Consider the system $\mathcal{LS}(U, \mathbf{t})$. Its augmented matrix representation is $[U | \mathbf{t}]$,

Since A is non-singular, $\begin{bmatrix} U | \mathbf{t} \end{bmatrix}$ is row-equivalent to the matrix $A \begin{bmatrix} U | \mathbf{t} \end{bmatrix}$, which is explicitly given by

$$A \begin{bmatrix} U | \mathbf{t} \end{bmatrix} = \begin{bmatrix} U' | A \mathbf{t} \end{bmatrix} = \begin{bmatrix} U'_{\sharp} & A_{\sharp} \mathbf{t} \\ \overline{\mathcal{O}_{p \times q} | A_{\sharp} \mathbf{t}} \end{bmatrix} = \begin{bmatrix} U'_{\sharp} & A_{\sharp} \mathbf{t} \\ \overline{\mathcal{O}_{p \times q} | \mathbf{0}_{p}} \end{bmatrix},$$

which is a reduced row-echelon form whose last column is not a pivot column.

Then the system $\mathcal{LS}(U, \mathbf{t})$ is consistent.

Therefore there exists some $\mathbf{z} \in \mathbb{R}^q$ such that $U\mathbf{z} = \mathbf{t}$.

Hence $\mathbf{t} \in \mathcal{C}(U)$.

It follows that Span $(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q\}) = \mathcal{C}(U) = \mathcal{N}(A_{\natural})$.

5. Theorem (M) suggests an 'algorithm' with which we can express the span of some 'concretely' given vectors in \mathbb{R}^n explicitly as the null space of a 'concretely' determined matrix with n columns.

'Algorithm' associated with Theorem (M).

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_q \in \mathbb{R}^n$. We are going to write down a matrix with n columns whose null space is the same as the span of these vectors.

• Step (0).

If $\mathbf{u}_1 = \mathbf{u}_2 = \cdots = \mathbf{u}_q = \mathbf{0}_n$ then Span $(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q\}) = \mathcal{N}(I_n)$.

From now on assume $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ are not all zero vectors.

• Step (1).

Form the matrix $U = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_n]$.

Further form the matrix $[U | I_n]$.

• Step (2).

Apply row operations on $[U | I_n]$ so as to result in the matrix [U' | A], which is row-equivalent to $[U | I_n]$, and in which U' is the reduced row-echelon form row-equivalent to U.

• Step (3).

Inspect the matrix U'. Denote its rank by r.

- * Suppose r = n. Then Span $(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q) = \mathcal{N}(\mathcal{O}_{1 \times n})$.
- * Suppose r < n. Write p = n r. Denote by A_{\natural} the $(p \times n)$ -matrix given by the bottom p rows of A.

Then Span
$$(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q) = \mathcal{N}(A_{\natural}).$$

6. Illustrations.

(a) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ -2 \\ 3 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ -5 \end{bmatrix}$.

We want to express $Span (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$ as the null space of some appropriate matrix with three columns.

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3]$.

We apply successive row operations starting from $[U|I_3]$, in such a way to obtain some matrix [U'|A] in which U' is the reduced row-echelon form row-equivalent to U:

$$\begin{bmatrix} U | I_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & | & 1 & 0 & 0 \\ 3 & -2 & 1 & | & 0 & 1 & 0 \\ -1 & 3 & -5 & | & 0 & 0 & 1 \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 0 & -1 & | & -2 & 1 & 0 \\ 0 & 1 & -2 & | & -3 & 1 & 0 \\ 0 & 0 & 0 & | & 7 & -2 & 1 \end{bmatrix} = \begin{bmatrix} U' | A \end{bmatrix}$$

in which
$$U' = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
, $A = \begin{bmatrix} -2 & 1 & 0 \\ -3 & 1 & 0 \\ 7 & -2 & 1 \end{bmatrix}$

The rank of U' is 2.

Define
$$A_{\natural} = \begin{bmatrix} 7 & 2 & -1 \end{bmatrix}$$
. We have $\mathcal{N}(A_{\natural}) = \mathsf{Span} \ (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$.

(b) Let
$$\mathbf{u}_1 = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -2 \\ 7 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} -2 \\ 3 \\ -12 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 1 \\ -4 \\ 11 \end{bmatrix}$.

We want to express Span $(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\})$ as the null space of some appropriate matrix with three columns.

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3 | \mathbf{u}_4].$

We apply successive row operations starting from $[U|I_3]$, in such a way to obtain some matrix [U'|A] in which U' is the reduced row-echelon form row-equivalent to U:

$$\begin{bmatrix} U | I_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 & 1 & 1 & 0 & 0 \\ -1 & -2 & 3 & -4 & 0 & 1 & 0 \\ 2 & 7 & -12 & 11 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & -2 & -1 & 0 \\ 0 & 1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} U' | A \end{bmatrix}$$

in which
$$U' = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
, $A = \begin{bmatrix} -2 & -1 & 0 \\ 1 & 0 & 0 \\ -3 & 2 & 1 \end{bmatrix}$

The rank of U' is 2.

Define
$$A_{\natural} = \begin{bmatrix} -3 & 2 & 1 \end{bmatrix}$$
. We have $\mathcal{N}(A_{\natural}) = \mathsf{Span} \ (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\})$.

(c) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$.

We want to express $Span (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$ as the null space of some appropriate matrix with three columns.

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3]$.

We apply successive row operations starting from $[U|I_3]$, in such a way to obtain some matrix [U'|A] in which U' is the reduced row-echelon form row-equivalent to U:

$$\begin{bmatrix} U | I_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 | 1 & 0 & 0 \\ 1 & 3 & 3 | 0 & 1 & 0 \\ 2 & 6 & 5 | 0 & 0 & 1 \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 0 & 0 | & 3 & -2 & 0 \\ 0 & 1 & 0 | & -1 & -1 & 1 \\ 0 & 0 & 1 | & 0 & 2 & -1 \end{bmatrix} = \begin{bmatrix} U' | A \end{bmatrix}$$

in which
$$U' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $A = \begin{bmatrix} 3 & -2 & 0 \\ -1 & -1 & 1 \\ 0 & 2 & -1 \end{bmatrix}$

The rank of U' is 3. We have Span $(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}) = \mathbb{R}^3 = \mathcal{N}(\mathcal{O}_{1\times 3})$.

(d) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 4 \\ 2 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -1 \\ 4 \\ 1 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}$.

We want to express $Span (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\})$ as the null space of some appropriate matrix with four columns.

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3 | \mathbf{u}_4].$

We apply successive row operations starting from $[U|I_4]$, in such a way to obtain some matrix [U'|A] in which U' is the reduced row-echelon form row-equivalent to U:

$$\begin{bmatrix} U | I_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\ 3 & 4 & 4 & 3 & 0 & 0 & 1 & 0 \\ 2 & 2 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 4 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & -7 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 & 4 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 2 & -1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} U' | A \end{bmatrix}$$

in which
$$U' = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
, $A = \begin{bmatrix} 4 & 0 & -1 & 0 \\ -7 & 1 & 2 & 0 \\ 4 & -1 & -1 & 0 \\ 2 & -1 & -1 & 1 \end{bmatrix}$

The rank of U' is 3.

Define
$$A_{\natural} = \begin{bmatrix} 2 & -1 & -1 & 1 \end{bmatrix}$$
. We have $\mathcal{N}(A_{\natural}) = \mathsf{Span} \ (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\})$.

(e) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \\ -1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 7 \\ 3 \\ 5 \\ -5 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 2 \end{bmatrix}$, $\mathbf{u}_5 = \begin{bmatrix} -1 \\ 0 \\ 9 \\ 0 \end{bmatrix}$.

We want to express Span ($\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$) as the null space of some appropriate matrix with four columns.

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3 | \mathbf{u}_4 | \mathbf{u}_5].$

We apply successive row operations starting from $[U | I_4]$, in such a way to obtain some matrix [U' | A] in which U' is the reduced row-echelon form row-equivalent to U:

$$\begin{bmatrix} U \mid I_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 7 & 1 & -1 \mid 1 & 0 & 0 & 0 \\ 1 & 1 & 3 & 1 & 0 \mid 0 & 1 & 0 & 0 \\ 3 & 2 & 5 & -1 & 9 \mid 0 & 0 & 1 & 0 \\ 1 & -1 & -5 & 2 & 0 \mid 0 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 0 & -1 & 0 & 3 \mid -3 & 5 & 0 & -1 \\ 0 & 1 & 4 & 0 & -1 \mid 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \mid 2 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 9 & -16 & 1 & 4 \end{bmatrix} = \begin{bmatrix} U' \mid A \end{bmatrix}$$

in which
$$U' = \begin{bmatrix} 1 & 0 & -1 & 0 & 3 \\ 0 & 1 & 4 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
, $A = \begin{bmatrix} -3 & 5 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 2 & -3 & 0 & 1 \\ 9 & -16 & 1 & 4 \end{bmatrix}$

The rank of U' is 3.

Define
$$A_{\natural} = \begin{bmatrix} 9 & -16 & 1 & 4 \end{bmatrix}$$
. We have $\mathcal{N}(A_{\natural}) = \mathsf{Span} \ (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\})$.

(f) Let
$$\mathbf{u}_1 = \begin{bmatrix} -2\\1\\1\\0\\0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 3\\-2\\0\\1\\0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1\\-4\\0\\0\\1 \end{bmatrix}$.

We want to express Span ($\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$) as the null space of some appropriate matrix with five columns. Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3]$.

We apply successive row operations starting from $[U | I_5]$, in such a way to obtain some matrix [U' | A] in which U' is the reduced row-echelon form which is row equivalent to U:

$$\begin{bmatrix} U \mid I_5 \end{bmatrix} = \begin{bmatrix} -2 & 3 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -2 & -4 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 & -3 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 2 & 4 \end{bmatrix} = \begin{bmatrix} U' \mid A \end{bmatrix}$$

in which
$$U' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 2 & -3 & -1 \\ 0 & 1 & -1 & 2 & 4 \end{bmatrix}$

The rank of U' is 3. Define $A_{\natural} = \begin{bmatrix} 1 & 0 & 2 & -3 & -1 \\ 0 & 1 & -1 & 2 & 4 \end{bmatrix}$. We have $\mathcal{N}(A_{\natural}) = \mathsf{Span} \ (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$.

(g) Let
$$\mathbf{u}_1 = \begin{bmatrix} -4\\1\\0\\0\\0\\0\\0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2\\0\\-1\\-2\\1\\0\\0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} -1\\0\\3\\6\\0\\1\\0 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 3\\0\\-5\\-6\\0\\0\\1 \end{bmatrix}$.

We want to express Span ($\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$) as the null space of some appropriate matrix with seven columns. Define $U = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \mathbf{u}_3 \mid \mathbf{u}_4]$.

We apply successive row operations starting from $[U | I_7]$, in such a way to obtain some matrix [U' | A] in which U' is the reduced row-echelon form which is row equivalent to U:

$$\text{in which } U' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 4 & 0 & 0 & 2 & 1 & -3 \\ 0 & 0 & 1 & 0 & 1 & -3 & 5 \\ 0 & 0 & 0 & 1 & 2 & -6 & 6 \end{bmatrix}$$

The rank of U' is 4. Define $A_{\sharp} = \begin{bmatrix} 1 & 4 & 0 & 0 & 2 & 1 & -3 \\ 0 & 0 & 1 & 0 & 1 & -3 & 5 \\ 0 & 0 & 0 & 1 & 2 & -6 & 6 \end{bmatrix}$. We have $\mathcal{N}(A_{\sharp}) = \operatorname{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\})$.