1. Recall Theorem (B) from the handout Linear Combinations:

Let t1,t9,--- ,t,, be vectors in R™,

Every linear combination of (finitely many) linear combinations of t1,ts, -+ ,t, Is a
linear combination of t1,ts,--- ,t,,.

Also recall the definition for the notion of span:

Let 71,29, - - - , 7, be (‘finitely many’) vectors in R™.
The span of (the set of vectors) z1,zo, - -+ , 2, is defined to be the set
{y € R™ : y is a linear combination of z1,z9, - - - , Zy, }

We denote this set by Span ({z1,22, -+ ,2,}).

2. In this handout we need to handle ‘equality questions’ on sets. We introduce the definition
for the notion of set equality (or recall it from the handout The use of set notations in linear
algebra):

Let K, L be sets (of vectors in R").
We say that K, L are equal to each other, and write K = L if and only if both of (), (1)
are true:

(1) For any u, ifu € K thenu € L.

(1) For any v, if v € L thenv € K.



3. Theorem (1).

Let uy,us, - -+ ,u,, vy, Vo, -+, V. be vectors in R™.
Suppose each of vy, Vs, -,V IS a linear combination of uj, us, - - - , U,
Further suppose each of uy, uy, - - - , U, Iis a linear combination of vi,vay, -+ , V.

Then Span ({ula U, - - - 7un}> — Span <{V17 Vo, 7Vk’}>'

Remark.

The equality ‘Span ({uy,ug,--- ,u,}) = Span ({vy,va, -+ ,vi}) is a set equality. What
such an equality means is that the statements (1), (1) below hold simultaneously:

(1) For any y € R, if y € Span ({uy,us,--- ,u,}) then y € Span ({vy,va, -, Vi}).

(1) For any y € R" if y € Span ({v1,Vva,--- ,vi}) then y € Span ({uy,us,--- ,u,}).



4. Proof of Theorem (1).

Let uy,us,--- ,u,, vy, vo, -+, Vi be vectors in R™.
Suppose each of vy, vy, -+, vy is a linear combination of u;, us, - - - , u,.
Further suppose each of uy, us, - - - , 1, is a linear combination of vy, vy, -+, v}.

We deduce the statement ():

(1) ‘For any y € R™, if y € Span ({uy,uy, -+ ,u,}) then y € Span ({vy,va, -+, vi}).
« Pick any y € R™. Suppose y € Span ({u,uy, -+ ,u,}).

[Reminder: We want to see why y is a linear combination of vy, vo, -+, vy.]
By definition, y is a linear combination of uy, ug, - - - , u,.

Each of uy, us, - -+ ,u, is a linear combination of vy, vy, -+, vp.

Then, by Theorem (B), y is a linear combination of vy, v, -+, vy.

Therefore y € Span ({vi, Vo, -+, Vi}).
Modifying the above argument for (1), we also deduce the statement (1):

(1) ‘For any y € R™, if y € Span ({vy, Vs, -+ ,Vvi}) then y € Span ({uy,us,--- ,u,}).
[t follows that Span ({uy,us, - ,u,}) = Span ({vi,va, -+, Vvi}).



5. The converse of Theorem (1) is an immediate consequence of Lemma (2).

Lemma (2).
Suppose z1,Zo, - - - , Z, are vectors in R™.
Then each of 1,2y, - - - , Z, belongs to Span ({z1, 22, ,2Z,}).

Theorem (3). (Converse of Theorem (1).)

Let uy,uo, -+ ,u,,Vy, Ve, -,V be vectors in R™.
SUppOSG Span ({111, u, - -~ 7un}> — Span ({V17 Vo, 7Vk}>'
Then each of vi, vy, -+, vy is a linear combination of uy, ug, - - - , U,

Also each of uy,uo, - - - , 1, Is a linear combination of vi, vy, -+ , V}.



6. We may combine Theorem (1) and Theorem (3) to obtain Theorem (K):
Theorem (K).

Let uy,uo, - -+ ,u,,Vvy, Ve, -+, Vy be vectors in R™. The statements below are logically

equivalent:

(a) Fach of vi, Vo, -+ , Vi isa linear combination of uy, U, - - - , U, and each ofuy, us, - - - , u,
is a linear combination of vi, vy, - | VL.

(b) Span ({ur, s, 1w, }) = Span ({vi,va, -+ vi}).
7. Corollary to Theorem (K).

Let uy,up,- -+ ,uy,ty,te,--- ,t, be vectors in R™. The statements below are logically
equivalent:
(a) Fach of t1,t9,--- ,t, is a linear combination of uy, u, - -+ , u,.

(b> SPan ({ub Uy, - -+, Up, tl) t27 T Jtp}> — Span <{u17 Uy, - - 7un}>



8. Illustrations of Theorem (K).
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9. Lemma (4).
Let H be an (m x n)-matrix, and G be an (m X k)-matrix.
Suppose A is a (m x m)-square matrix, and C(H) = C(G).
Then C(AH) = C(AG).

10. Proof of Lemma (4).
Let H be an (m X n)-matrix, and G be an (m X k)-matrix.
Suppose A is a (m x m)-square matrix, and C(H) = C(G).
[We are going to verify the set equality C(AH) = C(AG). This amount to deducing (with
the assumption stated earlier) that both (), (1) are true:
(f) Forany y € R™, if y € C(AG) theny € C(AH).
(1) For any y € R" if y € C(AH) then y € C(AG).

We will the arguments in two separate passages, one for each of (1), (1).]



« [Here we verify (}).]
Suppose y € C(AH). Then, by the definition of C(AH), there exist some x € R" such
that y = AHx.

[Reminder: We want to deduce y € C(AG). So we ask whether we can conceive some

appropriate w € R¥ which satisfies y = (AG)w.

How to conceive such a w? Compare the equality 'y = AHx’ which we have already
known to be true, with the desired equality 'y = AGw’, which we hope to be true.
This suggests we ask if there is indeed some w € R* which satisfies Hx = Gw. It
turns out that the answer is yes.]

By the definition of C(H), Hx € C(H).

Then by assumption Hx € C(G).

Then, by the definition of C(G), there exists some w € RF such that Hx = Gw.
Now y = AHx = AGw.

Then, by the definition of C(AG), we have y € C(AG).

« By modifying the above argument (through changing the symbols appropriately), we also
deduce that for any y € R™ if y € C(AG) theny € C(AH).



11.

12.

Lemma (5). (A ‘partial converse’ of Lemma (5).)

Let H be an (m x n)-matrix, and G be an (m X k)-matrix.

Suppose A is a non-singular (m x m)-square matrix, and C(AH) = C(AG).
Then C(H) = C(G).

Proof of Lemma (5).

(We are going to make a clever application of Lemma (4) so that we don’t have to prove a
set equality with direct reference to the definition of set equalities.]

Let H be an (m x n)-matrix, and G be an (m X k)-matrix.

Suppose A is a non-singular (m x m)-square matrix, and C(AH) = C(AG).

By assumption, A has a matrix inverse, namely the (m x m)-square matrix A=,

We have H = A~1(AH).

Then C(H) =C(A™'(AH))

We also have G = A7!(AG).

Then C(G) = C(A1(AQG)).

By assumption, C(AH) = C(AG). Then, by Lemma (4), we have C(A 1 (AH)) =
C(AY(AH)).

Therefore C(H) = C(A™Y(AH)) = C(A1(AG)) =C(G).



13. We combine Lemma (4) and Lemma (5) to obtain Theorem (L) below:
Theorem (L).
Let H be an (m X n)-matrix, and G be an (m X k)-matrix.
Suppose A is a non-singular (m X m)-square matrix.
Then the statements below are logically equivalent:
(a) C(H) =C(Q).
(b) C(AH) = C(AG).

Remark.
In plain words, this result is saying that
the equality between column spaces of matrices (though not necessarily the individual

matrices themselves) are preserved upon multiplication of the same non-singular square
matrix from the left to the matrices.

When we think in terms of row operations, this result is saying that

the equality between column spaces of matrices (though not necessarily the individual
matrices themselves) are preserved upon the application of the same sequence of row
operations to the matrices.



14. Under the ‘dictionary’ between the notion of column space and span, Lemma (4), Lemma
(5) and Theorem (L) respectively translate into Lemma (47), Lemma (5’) and Theorem (1.")
below.

Lemma (4’).

Let uy,us, - -+ ,u,,Vvy, Vo, -+, V. be vectors in R™.

Suppose A is a (m x m)-square matrix, and

Span ({uy,ug, -+ ,u,}) =Span ({vi,vo, -+, Vi}).

Then Span ({ Auy, Auy, - -- , Au, }) = Span ({Avy, Avy, - -+ | Avi}).

Lemma (5’). (A ‘partial converse’ of Lemma (4’).)
Let uy,ug, -+ ,u,,Vvy, Ve, -+, Vi be vectors in R™.

Suppose A is a non-singular (m X m)-square matrix, and

Span ({Auy, Auy, - - - , Au,}) = Span ({Avy, Avy, - -+ | Avi}).
Then Span ({uy, uy, - -+, u,}) = Span ({Vi, v, -+, Vi }).



Theorem (L’). (Re-formulation of Theorem (L) under the ‘dictionary’ be-
tween span and column space.)

Let uy,ug, -+ ,u,,Vvy, Ve, -,V be vectors in R™.
Suppose A is a non-singular (m X m)-square matrix.
Then the statements below are logically equivalent:
(a) Span ({ug,ug, - ,u,}) =Span ({vi,ve, -+, Vi}).
(b) Span ({Auy, Auy, - -+ , Au,}) = Span ({Avy, Avy, - -, Avi}).

Remark.
In plain words, this result is saying that

the equality between spans of vectors (though not necessarily the individual vectors them-

selves) are preserved upon multiplication of the same non-singular square matrix from
the left to the vectors.

When we think in terms of row operations, this result is saying that

the equality between spans of vectors (though not necessarily the individual vectors them-
selves) are preserved upon the application of the same sequence of row operations to the
vectors.



15. Theorem (6). (Generalization of Lemma (4) and Lemma (5).)
Let H be an (m x n)-matrix, and G be an (m X k)-matrix.
Let A be a (p X m)-matrix.
(a) Suppose C(H) = C(G).
Then C(AH) = C(AG).
(b) Suppose N'(A) = {0}, and C(AH) = C(AG).
Then C(AH) = C(AG).

Theorem (6’). (Generalization of Lemma (4’) and Lemma (5’).)

Let uy,uy, - -+ , Uy, Vi, Vo, - -+, Vi be vectors in R™. Let A be a (p X m)-matrix.

(a) Suppose Span ({uy, us, -+ ,u,}) = Span ({vy,va, -+, vi}).
Then Span ({Awuy, Auy, - -+, Au,}) = Span ({Avy, Ava, -+ Avi}).

(b) Suppose N(A) = {0}, and Span ({Auy, Auy, --- , Au,}) = Span ({Avy, Avy, -+, Avi}).
Then Span ({uy,uy,--- ,u,}) = Span ({vy, Vo, -+, Vi}).



