1. Definition. (Column space of a matrix.)

Let H be a $(p \times q)$ -matrix.

The column space of the matrix H is defined to be the set

$$\left\{ \mathbf{y} \in \mathbb{R}^p : \begin{array}{l} \text{There exist some } \mathbf{u} \in \mathbb{R}^q \\ \text{such that } \mathbf{y} = H\mathbf{u}. \end{array} \right\}$$

We denote this set by C(H).

Remark. We are applying the method of specification, with 'selection criterion'

(*) 'there exist some $\mathbf{u} \in \mathbb{R}^q$ such that $\mathbf{y} = H\mathbf{u}$.'

to form a certain set of vectors in \mathbb{R}^p , called the column space of the matrix H.

When put into plain words, the selection criterion (*) reads:

'y is a vector in \mathbb{R}^p which can be expressed as the product of H in the left and some vector in \mathbb{R}^q in the right.'

According to this 'selection criterion'

- Those vectors in \mathbb{R}^p resultant from multiplying H from the left to some vector in \mathbb{R}^q are collected.
- Those vectors in \mathbb{R}^p not resultant from multiplying H from the left to some vector in \mathbb{R}^q are 'discarded'.

For this reason, C(H) is simply the collection of all vectors in \mathbb{R}^p which can be 'expressed in the form' $H\mathbf{u}$, and only such vectors.

So very often the set C(H) is given the short-hand $\{H\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^q\}$.

Further remark. How to use the various versions of the definitions?

Always remember, whenever $\mathbf{v} \in \mathbb{R}^p$, the statements below mean the same thing:

- (a) $\mathbf{v} \in \mathcal{C}(H)$.
- (b) There exists some $\mathbf{u} \in \mathbb{R}^q$ such that $\mathbf{v} = H\mathbf{u}$.

2. Theorem (1). (Column space of a matrix as a 'subspace'.)

Suppose H is a $(p \times q)$ -matrix. Then the statements below hold.

- (a) $\mathbf{0}_p \in \mathcal{C}(H)$.
- (b) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$, if $\mathbf{x} \in \mathcal{C}(H)$ and $\mathbf{y} \in \mathcal{C}(H)$ then $\mathbf{x} + \mathbf{y} \in \mathcal{C}(H)$.
- (c) For any $\mathbf{x} \in \mathbb{R}^p$, for any $\alpha \in \mathbb{R}$, if $\mathbf{x} \in \mathcal{C}(H)$ then $\alpha \mathbf{x} \in \mathcal{C}(H)$.
- (d) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$, for any $\alpha, \beta \in \mathbb{R}$, if $\mathbf{x} \in \mathcal{C}(H)$ and $\mathbf{y} \in \mathcal{C}(H)$ then $\alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{C}(H)$.

3. Proof of Theorem (1).

Suppose H is a $(p \times q)$ -matrix.

(a) Note that $\mathbf{0}_p = H\mathbf{0}_q$, and $\mathbf{0}_q \in \mathbb{R}^q$.

Then $\mathbf{0}_p \in \mathcal{C}(H)$.

(b) Pick any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$. Suppose $\mathbf{x}, \mathbf{y} \in \mathcal{C}(H)$.

[Ask: What to verify? Answer: 'There exist some $\mathbf{w} \in \mathbb{R}^q$ such that $\mathbf{x} + \mathbf{y} = H\mathbf{w}$.'

Further ask: How comes such a vector \mathbf{w} ? Answer: Make use of the information provided by ' $\mathbf{x} \in \mathcal{C}(H)$ ' and ' $\mathbf{y} \in \mathcal{C}(H)$ '.]

By definition of C(H), there exist some $\mathbf{u}, \mathbf{v} \in \mathbb{R}^q$ such that $\mathbf{x} = H\mathbf{u}$ and $\mathbf{y} = H\mathbf{v}$.

Now $\mathbf{x} + \mathbf{y} = H\mathbf{u} + H\mathbf{v} = H(\mathbf{u} + \mathbf{v})$. Since $\mathbf{u}, \mathbf{v} \in \mathbb{R}^q$, it happens that $\mathbf{u} + \mathbf{v} \in \mathbb{R}^q$.

Then by the definition of C(H), $\mathbf{x} + \mathbf{y} \in C(H)$.

(c) Pick any $\mathbf{x} \in \mathbb{R}^p$. Pick any $\alpha \in \mathbb{R}$. Suppose $\mathbf{x} \in \mathcal{C}(H)$.

[Ask: What to verify?

Answer. 'There exist some $\mathbf{w} \in \mathbb{R}^q$ such that $\alpha \mathbf{x} = H\mathbf{w}$ ']

By definition of C(H), there exist some $\mathbf{u} \in \mathbb{R}^q$ such that $\mathbf{x} = H\mathbf{u}$.

Now $\alpha \mathbf{x} = \alpha H \mathbf{u} = H(\alpha \mathbf{u})$. Since $\mathbf{u}, \mathbf{v} \in \mathbb{R}^q$, it happens that $\alpha \mathbf{u} \in \mathbb{R}^q$.

Then by the definition of C(H), $\alpha \mathbf{x} \in C(H)$.

- (d) Exercise.
- 4. An alternative way of visualizing the notion of *column space* is through the notions of *linear combination* and *span* (which will be introduced shortly).

Recall the definition for the notion of linear combination:

Let $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ be vectors in \mathbb{R}^m .

Let **w** be a vector in \mathbb{R}^m .

We say **v** is a linear combination of $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ if the statement (†) holds:

(†) There exist some real numbers $\alpha_1, \alpha_2, \cdots, \alpha_n$ such that $\mathbf{w} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2 + \cdots + \alpha_n \mathbf{z}_n$.

The expression $\alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2 + \cdots + \alpha_n \mathbf{z}_n$ on its own is called the linear combination of the vectors $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ and the scalars $\alpha_1, \alpha_2, \cdots, \alpha_n$.

5. Definition. (Span of a set of vectors in \mathbb{R}^m .)

Let $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ be ('finitely many') vectors in \mathbb{R}^m .

The span of (the set of vectors) $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ is defined to be the set

$$\{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} \text{ is a linear combination of } \mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n \}$$

We denote this set by Span $(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$ (or $(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$).

Remark. Span $(\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n\})$ is constructed with the help of the method of specification, with 'selection criterion'

(*) 'y is a linear combination of $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$,'

when we collect those and only those vectors in \mathbb{R}^m which are linear combinations of $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$.

For this reason, Span $(\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n\})$ is simply the collection of all vectors in \mathbb{R}^m which can be 'expressed' as linear combinations of $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$, and only such vectors.

Further remark. How to use the various versions of the definitions?

Always remember, whenever $\mathbf{v} \in \mathbb{R}^m$, the statements below mean the same thing:

- (\sharp) **y** belongs to Span ({ $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ }).
- (\boldsymbol{b}) **y** is a linear combination of $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$.
- (b) There exist some real numbers $\alpha_1, \alpha_2, \dots, \alpha_n$ such that $\mathbf{y} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2 + \dots + \alpha_n \mathbf{z}_n$.

Further remark on terminologies and symbols.

- (a) In some textbooks, it is emphasized that the notion of span is defined on sets of vectors; hence the brackets ' $\{$ ', ' $\}$ ' are used in the notation.
- (b) For convenience, we may read ' $\mathbf{y} \in \text{Span}(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$ ' as ' \mathbf{y} is spanned by $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ '.

When a set of vectors, say, V, is equal to the set Span $(\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n\})$, we may read this set equality as 'the set V is spanned by $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ '.

6. With the help of Lemma (A) (from the handout *linear combinations*), we are going to set up a 'dictionary' between the notion of *span* and the notion of *column space*.

Recall Lemma (A):

Let A be an $(m \times n)$ -matrix, and **t** be a vector in \mathbb{R}^n .

Suppose that for each $j=1,2,\cdots,n$, the j-th column of A is \mathbf{a}_j and the j-th entry of \mathbf{t} is t_j . (So A=

$$\begin{bmatrix} \mathbf{a}_1 \mid \mathbf{a}_2 \mid \cdots \mid \mathbf{a}_n \end{bmatrix}$$
 and $\mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix}$.)

Then $A\mathbf{t} = t_1\mathbf{a}_1 + t_2\mathbf{a}_2 + \cdots + t_n\mathbf{a}_n$.

7. Theorem (D). ('Dictionary' between the notion of span and the notion of column space.)

Let $\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q$ be vectors in \mathbb{R}^p , and H be a $(p \times q)$ -matrix.

Suppose that the j-th column of H is \mathbf{h}_j for each j. (So $H = [\mathbf{h}_1 \mid \mathbf{h}_2 \mid \cdots \mid \mathbf{h}_q]$.)

Then $C(H) = \text{Span } (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_a\}).$

Remark. The significance of Theorem (D) is that every statement about spans of collections of finitely many vectors can be translated into a statement about column spaces of matrices, and vice versa.

Further remark. The equality ' $C(H) = \text{Span } (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ ' is a set equality. What such an equality means is that the statements $(\dagger), (\dagger)$ below hold simultaneously:

- (†) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathcal{C}(H)$ then $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$.
- (‡) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ then $\mathbf{y} \in \mathcal{C}(H)$.
- 8. Proof of Theorem (D).

Let $\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_q$ be vectors in \mathbb{R}^p , and H be a $(p \times q)$ -matrix.

Suppose that the *j*-th column of *H* is \mathbf{h}_{j} for each *j*. Then $H = [\mathbf{h}_{1} \mid \mathbf{h}_{2} \mid \cdots \mid \mathbf{h}_{q}]$.

[We verify the statements (\dagger) , (\ddagger) :

- (†) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathcal{C}(H)$ then $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$.
- (‡) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ then $\mathbf{y} \in \mathcal{C}(H)$.

The arguments are given in two separate paragraphs, one for (†) and the other (‡).

• Pick any $\mathbf{y} \in \mathbb{R}^p$. Suppose $\mathbf{y} \in \mathcal{C}(H)$.

Then there exists some $\mathbf{u} \in \mathbb{R}^q$ such that $\mathbf{y} = H\mathbf{u}$.

For each i, denote the i-th entry of \mathbf{u} by u_i .

Then, by Lemma (A), $\mathbf{y} = u_1 \mathbf{h}_1 + u_2 \mathbf{h}_2 + \cdots + u_q \mathbf{h}_q$.

Therefore $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$

• Pick any $\mathbf{y} \in \mathbb{R}^p$. Suppose $\mathbf{y} \in \mathsf{Span}\ (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$.

Then there exists some $u_1, u_2, \dots, u_q \in \mathbb{R}$ such that $\mathbf{y} = u_1 \mathbf{h}_1 + u_2 \mathbf{h}_2 + \dots + u_q \mathbf{h}_q$.

Define the vector \mathbf{u} in \mathbb{R}^q by $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_q \end{bmatrix}$.

Then by Lemma (A), we have y = Hu.

Therefore $\mathbf{y} \in \mathcal{C}(H)$.

It follows that $C(H) = \text{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ holds.

9. Illustrations of the content of Theorem (D).

$$\text{(a)} \ \ \mathcal{C}\left(\left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 7 \\ 1 & 4 & 7 & 10 \end{array}\right]\right) = \operatorname{Span} \ \left(\left\{\left[\begin{matrix} 1 \\ 1 \\ 1 \end{matrix}\right], \left[\begin{matrix} 2 \\ 3 \\ 4 \end{matrix}\right], \left[\begin{matrix} 3 \\ 5 \\ 7 \end{matrix}\right], \left[\begin{matrix} 4 \\ 7 \\ 10 \end{matrix}\right]\right\}\right)$$

$$\text{(b) } \mathcal{C} \left(\left[\begin{array}{ccc} 1 & 0 & 9 \\ 0 & 2 & 8 \\ 1 & 4 & 7 \\ 0 & 6 & 6 \\ 1 & 8 & 5 \end{array} \right] \right) = \mathsf{Span} \left(\left\{ \left[\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array} \right], \left[\begin{array}{c} 0 \\ 2 \\ 4 \\ 6 \\ 8 \end{array} \right], \left[\begin{array}{c} 9 \\ 8 \\ 7 \\ 6 \\ 5 \end{array} \right] \right\} \right)$$

10. Theorem (2). (Span of vectors as a 'subspace'.)

Suppose $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ are vectors in \mathbb{R}^m . Write $V = \mathsf{Span} \ (\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$.

The statements below hold:

- (a) $0 \in V$.
- (b) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, if $\mathbf{x} \in V$ and $\mathbf{y} \in V$ then $\mathbf{x} + \mathbf{y} \in V$.
- (c) For any $\mathbf{x} \in \mathbb{R}^m$, for any $\alpha \in \mathbb{R}$, if $\mathbf{x} \in V$ then $\alpha \mathbf{x} \in V$.
- (d) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, for any $\alpha, \beta \in \mathbb{R}$, if $\mathbf{x} \in V$ and $\mathbf{y} \in V$ then $\alpha \mathbf{x} + \beta \mathbf{y} \in V$.

Proof of Theorem (2). This is a consequence of Theorem (1) and Theorem (D).