MATH1030 Existence and uniqueness of solutions for a system of linear equations whose coefficient matrix is a square matrix

1. Lemma (θ). (Invertibility as a sufficient condition for existence and uniqueness of solution for systems of linear equations.)

Let A be an $(n \times n)$ -square matrix.

Suppose A is invertible.

Then, for any vector **b** in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{b})$ has one and only one solution, namely, ' $\mathbf{x} = A^{-1}\mathbf{b}$ '.

Proof of Lemma (θ).

Suppose A is invertible. Then its matrix inverse A^{-1} is well-defined as an $(n \times n)$ -square matrix. Pick any vector **b** in \mathbb{R}^n .

- We have $A(A^{-1}\mathbf{b}) = (AA^{-1})\mathbf{b} = I_n\mathbf{b} = \mathbf{b}$. Hence ' $\mathbf{x} = A^{-1}\mathbf{b}$ ' is a solution of the system $\mathcal{LS}(A, \mathbf{b})$.
- Suppose 'x = v' is a solution of the system \$\mathcal{LS}(A, b)\$.
 [Ask: Can it happen that v fails to be \$A^{-1}b\$? (We hope not.)]
 Then b = Av. Therefore \$A^{-1}b = A^{-1}(Av) = (A^{-1}A)v = I_nv = v\$.

Hence ' $\mathbf{x} = A^{-1}\mathbf{b}$ ' is the one and only one solution of the system $\mathcal{LS}(A, \mathbf{b})$.

2. Question. Is invertibility a necessary condition for existence and uniqueness of solution for systems of linear equations?

What we are asking is whether the converse of Lemma (θ) , as formulated below, is true:

'Let A be an $(n \times n)$ -square matrix. Suppose that, for any vector **b** in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{b})$ has one and only one solution. Then A is invertible.'

Answer. The answer to this question is yes.

Actually it takes 'much less' for a square matrix to be necessarily invertible. This is the point of Lemma (ι) and Lemma (κ).

3. Lemma (ι).

Let A be an $(n \times n)$ -square matrix.

Suppose that, for any vector \mathbf{c} in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{c})$ has at most one solution.

Then A is invertible.

Lemma (κ).

Let A be an $(n \times n)$ -square matrix.

Suppose that, for any vector \mathbf{d} in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{d})$ has at least one solution.

Then A is invertible.

4. Proof of Lemma (ι).

Let A be an $(n \times n)$ -square matrix.

Suppose that, for any vector \mathbf{c} in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{c})$ has at most one solution.

Then, in particular, the homogeneous system $\mathcal{LS}(A, \mathbf{0})$ has at most one solution.

Recall that $\mathcal{LS}(A, \mathbf{0})$ has at least one solution, namely, the trivial solution.

Then $\mathcal{LS}(A, \mathbf{0})$ has exactly one solution, namely, the trivial solution. Therefore, by Lemma (1), A is non-singular. Hence, by Theorem (B), A is invertible.

5. Proof of Lemma (κ).

Let A be an $(n \times n)$ -square matrix.

Suppose that, for any vector **d** in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{d})$ has at least one solution.

Denote by $\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n$ the respective columns of I_n from left to right. (So $I_n = [\mathbf{e}_1 | \mathbf{e}_2 | \cdots | \mathbf{e}_n]$.)

By assumption, for each $j = 1, 2, \dots, n$, the system $\mathcal{LS}(A, \mathbf{e}_j)$ has at least one solution, say, ' $\mathbf{x} = \mathbf{g}_j$ '. So by definition, $A\mathbf{g}_j = \mathbf{e}_j$.

Define $G = [\mathbf{g}_1 \mid \mathbf{g}_2 \mid \cdots \mid \mathbf{g}_n]$

- We verify that $AG = I_n$:
 - We have $AG = A[\mathbf{g}_1 | \mathbf{g}_2 | \cdots | \mathbf{g}_n] = [A\mathbf{g}_1 | A\mathbf{g}_2 | \cdots | A\mathbf{g}_n] = [\mathbf{e}_1 | \mathbf{e}_2 | \cdots | \mathbf{e}_n] = I_n.$

Now by Theorem (A), G is non-singular. Therefore by Theorem (B), G is invertible. Furthermore, A is a matrix inverse of G. (Why?) Hence A is also invertible.

6. We can summarize our discussion above in Lemma (λ) .

Lemma (λ) .

Let A be an $(n \times n)$ -square matrix.

The statements below are logically equivalent:

- (a) A is invertible.
- (b) For any vector **b** in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{b})$ has one and only one solution, namely, ' $\mathbf{x} = A^{-1}\mathbf{b}$ '.
- (c) For any vector \mathbf{c} in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{c})$ has at least one solution.
- (d) For any vector \mathbf{d} in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{d})$ has at most one solution.

We combine Lemma (λ) and Theorem (C) to obtain an upgrade of Theorem (C) in the form of Theorem (E).

7. Theorem (E). (Various re-formulations for the notions of non-singularity and invertibility.)

Let A be an $(n \times n)$ -matrix. The statements below are logically equivalent:

- (a) A is non-singular.
- (b) For any vector \mathbf{v} in \mathbb{R}^n , if $A\mathbf{v} = \mathbf{0}$ then $\mathbf{v} = \mathbf{0}$.
- (c) The trivial solution is the only solution of the homogeneous system $\mathcal{LS}(A, \mathbf{0})$.
- (d) A is row-equivalent to I_n .
- (e) A is invertible.
- (f) There exists some $(n \times n)$ -square matrix H such that $HA = I_n$.
- (g) There exists some $(n \times n)$ -square matrix G such that $AG = I_n$.
- (h) For any vector **b** in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{b})$ has one and only one solution, namely, ' $\mathbf{x} = A^{-1}\mathbf{b}$ '.
- (i) For any vector \mathbf{c} in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{c})$ has at least one solution.
- (j) For any vector **d** in \mathbb{R}^n , the system $\mathcal{LS}(A, \mathbf{d})$ has at most one solution.

Now suppose A is non-singular, with a sequence of row operations

$$A = C_1 \xrightarrow{\rho_1} C_2 \xrightarrow{\rho_2} \cdots \xrightarrow{\rho_{p-2}} C_{p-1} \xrightarrow{\rho_{p-1}} C_p = I_n,$$

and with H_k being the row-operation matrix corresponding to ρ_k for each k. Then $[I_n|A^{-1}]$ is the resultant of the application of the same sequence of row operations $\rho_1, \rho_2, \cdots, \rho_{p-1}$ starting from $[A|I_n]$:

$$[A|I_n] = [C_1|I_n] \xrightarrow{\rho_1} [C_2|H_1] \xrightarrow{\rho_2} [C_3|H_2H_1] \xrightarrow{\rho_3} \cdots \xrightarrow{\rho_{p-2}} [C_{p-1}|H_{p-2}\cdots H_2H_1] \xrightarrow{\rho_{p-1}} [C_p|H_{p-1}\cdots H_2H_1] = [I_n|A^{-1}].$$

Moreover, A^{-1} and A are respectively given as products of row-operation matrices by

$$A^{-1} = H_{p-1} \cdots H_2 H_1, \qquad \qquad A = H_1^{-1} H_2^{-1} \cdots H_{p-1}^{-1}.$$