
MATH1030 Non-singularity and invertibility
1. Definition. (Invertibility.)

Let A be an (n× n)-square matrix.

(a) Suppose B is a (n × n)-square matrix. Further suppose BA = In and AB = In. Then we say B is a matrix
inverse of A.

(b) A is said to be invertible if and only if A has a matrix inverse.

2. Two (trivial) examples.

(a) The identity matrix In is invertible, and a matrix inverse of it is In itself.
(b) The zero (n× n)-square matrix is not invertible.

3. Lemma (α). (Uniqueness of matrix inverse.)
Let A be an (n× n)-square matrix. Suppose B,C are both matrix inverses of A. Then B = C.
Proof of Lemma (α).
Under the assumption, we have BA = In and AC = In. Then B = BIn = B(AC) = (BA)C = InC = C.
Remarks.

• From now on there is no problem using the article the in writing the words the matrix inverse of the invertible
matrix blah-blah-blah.

• For the same reason, it makes to label the matrix inverse of an invertible matrix, say, A, with something which
involves the symbol ‘A’.
From now on, we denote by A−1 the matrix inverse of such an invertible matrix A.

4. Lemma (β). (Product of matrix inverses.)
Let A,B be (n× n)-square matrices.
Suppose A,B are invertible. Then the product AB is invertible with matrix inverse given by (AB)−1 = B−1A−1.
Proof of Lemma (β).
Under the assumption, we have A−1A = In and AA−1 = In. Moreover, B−1B = In and BB−1 = In.
Write C = AB, and D = B−1A−1.
We have DC = (B−1A−1)(AB) = B−1[A−1(AB)] = B−1[(A−1A)B] = B−1(InB) = B−1B = In.
We also have CD = (AB)(B−1A−1) = · · · · · · · · · = In.
Therefore, by the definition of matrix inverse and invertibility, C is invertible with matrix inverse D.
Then AB is invertible, and its matrix inverse is given by (AB)−1 = B−1A−1.
Remark. By mathematical induction, we can prove this generalization of Lemma (β):

Let A1, A2, · · · , Ak be (n× n)-square matrices.
Suppose A1, A2, · · · , Ak are invertible. Then the product A1A2 · · ·Ak is invertible with matrix inverse given
by (A1A2 · · ·Ak)

−1 = Ak
−1 · · ·A2

−1A1
−1 .

5. Corollary to Lemma (β).
Let A be an (n × n)-square matrix. Suppose A is invertible. Then, for each positive integer p, the matrix Ap is
invertible with matrix inverse given by (Ap)−1 = (A−1)p.
Proof. Exercise in mathematical induction.

6. Lemma (γ).

(a) Every row operation matrix is invertible. Its matrix inverse is the row operation matrix corresponding to its
reverse row operation.

(b) Suppose H1,H2, · · · ,Hk are row-operation matrices, and H = Hk · · ·H2H1.
Then H is invertible, and its matrix inverse is given by H−1 = H1

−1H2
−2 · · ·Hk

−1.

Proof of Lemma (γ). [This is a straightforward calculation, though it requires patience.]
Let C, C ′ be (n × n)-square matrices. Suppose C ′ is the resultant of the application of some row operation ρ

on C. Denote by ρ̃ the ‘reverse’ row operation corresponding to ρ. Denote the respective row operation matrices
corresponding to ρ, ρ̃ by H, H̃ respectively.

Then C ′ = HC and C = H̃C ′.
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• Suppose ρ is given by αRi +Rk, in which α is some real number, and i ̸= k. Then ρ̃ is given by −αRi +Rk.
Therefore H = In + αEn,n

k,i , H̃ = In − αEn,n
k,i .

Since i ̸= k, we have (En,n
k,i )

2 = On×n. Then

H̃H = (In − αEn,n
k,i )(In + αEn,n

k,i )

= InIn − (αEn,n
k,i )In + In(αE

n,n
k,i )− (αEn,n

k,i )(αE
n,n
k,i )

= In − α2(En,n
k,i )

2

= In − α2On×n = In

Similarly, we have HH̃ = In.
• Suppose ρ is given by βRk, in which β is some non-zero real number. Then ρ̃ is given by (1/β)Rk.

Therefore H = In + (β − 1)En,n
k,k , H̃ = In + (1/β − 1)En,n

k,k .
We have (En,n

k,k )
2 = En,n

k,k . Then

H̃H = [In + (β − 1)En,n
k,k ][In + (1/β − 1)En,n

k,k ]

= InIn + [(β − 1)En,n
k,k ]In + In[(1/β − 1)En,n

k,k ] + [(β − 1)En,n
k,k ][(1/β − 1)En,n

k,k ]

= In + (β + 1/β − 2)En,n
k,k + (−β − 1/β + 2)(En,n

k,k )
2

= In + (β + 1/β − 2)En,n
k,k + (−β − 1/β + 2)En,n

k,k = In

Similarly, we have HH̃ = In.
• Suppose ρ is given by Ri ↔ Rk, in which i ̸= k. Then ρ̃ is given by Ri ↔ Rk.

Therefore H = In − En,n
i,i − En,n

k,k + En,n
i,k + En,n

k,i = H̃.
Note that:

∗ If p, q, r, s are integers between 1 and n, then En,n
p,q E

n,n
r,s =

{
En,n

p,s when q = r

On×n when q ̸= r.

Since i ̸= k, we have

H̃H = HH̃ = H2 = (In − En,n
i,i − En,n

k,k + En,n
i,k + En,n

k,i )
2 = · · · = In.

(Fill in the detail.)

The rest of Lemma (γ) follows from the above.

7. Lemma (δ). (Invertibility of matrix inverse.)
Let A be an (n× n)-square matrix.
Suppose A is invertible. Then its matrix inverse A−1 is invertible, and the matrix inverse of A−1 is given by
(A−1)−1 = A.
Proof of Lemma (δ).
Under the assumption, we have A−1A = In and AA−1 = In.
Write B = A, and C = A−1.
Since AA−1 = In, we have BC = In.
Since A−1A = In, we have CB = In. Therefore BC = In and CB = In.
Then, by the definition of matrix inverse and invertibility, C is invertible with matrix inverse B.
Therefore A−1 is invertible and its matrix inverse is given by (A−1)−1 = A.

8. Lemma (ϵ). (Invertibility implies non-singularity.)
Let A be an (n× n)-square matrix.
Suppose A invertible. Then A is non-singular, and its matrix inverse A−1 is non-singular and invertible.
Proof of Lemma (ϵ).
Under the assumption, we have A−1A = In and AA−1 = In. By Lemma (δ), A−1 is invertible.
Since A−1A = In, we conclude from Lemma (2) that A is non-singular.
Since AA−1 = In, we conclude from Lemma (2) that A−1 is non-singular.
Remark. Recall Lemma (2):
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Let C be a (p× p)-square matrix.
Suppose there exists some (p× p)-square matrix J such that JC = Ip.
Then C is non-singular.

9. Lemma (ζ). (Non-singularity implies invertibility.)
Let A be an (n× n)-square matrix.

Suppose A non-singular. Then A is invertible, and its matrix inverse A−1 is non-singular and invertible.
Proof of Lemma (ζ).
Under the assumption, and according to Lemma (6), there exists some (n × n)-square matrix H such that H is
non-singular, HA = In and AH = In.
Now, by definition, A is invertible with its matrix inverse given by A−1 = H.
H is invertible by Lemma (δ).

10. Theorem (B). (Equivalence of non-singularity and invertibility.)
Let A be an (n× n)-square matrix.
A is non-singular if and only if A is invertible.
Furthermore, if A is invertible, then its matrix inverse A−1 is non-singular and invertible with matrix inverse given
by (A−1)−1 = A.

11. Corollary to Theorem (B).
Let A be an (n× n)-square matrix.
The statements below are logically equivalent:

(a) A is invertible.
(b) There exists some (n× n)-square matrix H such that HA = In.
(c) There exists some (n× n)-square matrix G such that AG = In.

Proof of Corollary to Theorem (B).

• Suppose A is invertible. Then A has a unique matrix inverse A−1. So it follows that A−1A = In and AA−1 = In.
• Suppose there exists some (n×n)-square matrix H such that HA = In. Then, by Lemma (2), A is non-singular.

Therefore, by Theorem (B), A is invertible.
• Suppose there exists some (n×n)-square matrix G such that AG = In. Then, by Lemma (2), G is non-singular.

Therefore, by Theorem (B), G is invertible. We verify that G−1 = A:

We have In = AG. Then G−1 = InG
−1 = (AG)G−1 = A(GG−1) = AIn = A.

Then by Lemma (δ), A is invertible.

Remark. With the help of Theorem (B) and its corollary, together with the calculations leading towards Lemma
(6), we can ‘upgrade’ Theorem (A) to obtain Theorem (C).

12. Theorem (C). (Various re-formulations for the notions of non-singularity and invertibility.)
Let A be an (n× n)-square matrix. The statements below are logically equivalent:

(a) A is non-singular.
(b) For any vector v in Rn, if Av = 0 then v = 0.
(c) The trivial solution is the only solution of the homogeneous system LS(A, 0).
(d) A is row-equivalent to In.
(e) A is invertible.
(f) There exists some (n× n)-square matrix H such that HA = In.
(g) There exists some (n× n)-square matrix G such that AG = In.
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Now suppose A is non-singular, with a sequence of row operations
A = C1 −→

ρ1

C2 −→
ρ2

· · · · · · −→
ρp−2

Cp−1 −→
ρp−1

Cp = In,

and with Hk being the row-operation matrix corresponding to ρk for each k.
Then [In|A−1] is the resultant of the application of the same sequence of row operations ρ1, ρ2, · · · , ρp−1 starting
from [A|In]:

[A|In] = [C1|In]−→
ρ1

[C2|H1]−→
ρ2

[C3|H2H1]−→
ρ3

· · · · · · −→
ρp−2

[Cp−1|Hp−2 · · ·H2H1]−→
ρp−1

[Cp|Hp−1 · · ·H2H1] = [In|A−1].

Moreover, A−1 and A are respectively given as products of row-operation matrices by

A−1 = Hp−1 · · ·H2H1, A = H1
−1H2

−1 · · ·Hp−1
−1.

13. Corollary to Theorem (C).
The statements below hold:
(a) The matrix inverse of every invertible matrix is a product of finitely many row-operation matrices.
(b) Every non-singular matrix is a product of finitely many row-operation matrices.

14. Recall what Lemma (β) says (when put in plain words): the product of any two invertible matrices is an invertible.
We now upgrade Lemma (β) with the help of Theorem (B), to obtain Lemma (β′).
Lemma (β′).
Let A,B be (n × n)-square matrices. Suppose A,B are non-singular and invertible. Then the product AB is
non-singular and invertible.

15. The converse of Lemma (β′), as formulated below, is also true.
Lemma (η).
Let A,B be (n× n)-square matrices. Suppose the product AB is non-singular and invertible. Then each of A,B is
non-singular and invertible.
Proof of Lemma (η).
Suppose AB is non-singular and invertible.
We verify that B is non-singular:

• [This amounts to verifying the statement ‘for any v ∈ Rn, if Bv = 0 then v = 0.’]
Pick any v ∈ Rn. Suppose Bv = 0.
Then (AB)v = A(Bv) = A0 = 0.
Since AB is non-singular and (AB)v = 0, we have v = 0.
It follows that B is non-singular.

Now, by Theorem (B), the matrix B is invertible, with matrix inverse B−1. Note that B−1 is invertible.
Note that A = AIn = A(BB−1) = (AB)B−1.
Since AB is invertible and B−1 is invertible, A is also invertible according to Lemma (β).
Now, by Theorem (B), the matrix A is non-singular.
Remark. We may combine Lemma (β′) and Lemma (η) to obtain Theorem (D).

16. Theorem (D).
Suppose A,B are (n× n)-square matrices.
Then the statements below are logically equivalent:

(♯) Each of A,B is non-singular and invertible.
(♭) The product AB is non-singular and invertible.

17. Corollary to Theorem (D).
Suppose B1, B2, · · · , Bk are (n× n)-square matrices.
Then the statements below are logically equivalent:

(♯♯) Each of B1, B2, · · · , Bk is non-singular and invertible.
(♭♭) The product B1B2 · · ·Bk is non-singular and invertible.

Proof of Corollary to Theorem (D). Apply Theorem (D) and mathematical induction.
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