
MATH1030 Non-singularity in terms of row operations and matrix multiplication

1. How to re-formulate the notion of non-singularity in terms of row operations and reduced row-echelon
forms?
Recall the definition for the notion of non-singularity:

Suppose A is a square matrix. Then A is non-singular if and only if the trivial solution is the only solution for
the homogeneous system LS(A, 0).

So, from the definition, when A is indeed a square matrix and A′ is the reduced row-echelon form which is row-
equivalent to A, we will have the mutually exclusive scenarios (†), (†′) below, dependent on whether A′ is the identity
matrix or not:—

(†) Suppose A′ = In. Then the trivial solution is the only solution for the homogeneous system LS(A, 0). Therefore
A is non-singular.

(†′) Suppose A′ ̸= In. Then A′ is singular. Therefore there is a non-trivial solution for the homogeneous system
LS(A′, 0), which is also a non-trivial solution for the homogeneous system LS(A, 0). Hence A is singular.

Summarizing the discussion above, we have obtained a re-formulation for the notion of non-singularity in terms of
reduced row-echelon forms.

2. Lemma (4).
Let A be a square matrix.
A is non-singular if and only if the reduced row-echelon form which is row-equivalent to A is given by the identity
matrix.
Remark. In the light of the Lemma (2), we may state Lemma (4) in this way:

Let A be a square matrix. The following statements are logically equivalent:
(a) A is non-singular.
(b) A is row equivalent to In.

3. Example (⋆), as illustrations for Lemma (4).

(a) Let A =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1

.

We find the reduced row-echelon form A′ which is row-equivalent to A, say, through Gaussian elimination:

(α) : A = C1−→
ρ1

C2−→
ρ2

· · · −→
ρ17

C18−→
ρ18

C19 = A′

in which the ρk’s are given by:

k ρk k ρk k ρk
1 2R1 +R2 7 1R1 +R5 13 −1R4 +R1
2 −1R1 +R3 8 1R3 +R4 14 −1R4 +R2
3 2R1 +R4 9 −2R3 +R5 15 1R4 +R3
4 1R1 +R5 10 −2R2 +R1 16 −2R5 +R1
5 1R2 +R3 11 3R3 +R1 17 1R5 +R2
6 −1R2 +R4 12 −2R3 +R2 18 −1R5 +R3

It happens that A′ = I5. Then we may conclude that A is non-singular.

(b) Let A =

 1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

.

We find the reduced row-echelon form A′ which is row-equivalent to A, say, through Gaussian elimination:

(α) : A = C1−→
ρ1

C2−→
ρ2

· · · −→
ρ11

C12−→
ρ12

C13 = A′

in which the ρk’s are given by:

k ρk k ρk k ρk
1 −1R1 +R2 5 R3 ↔ R4 9 −1R3 +R2
2 −1R1 +R3 6 1R3 +R4 10 1R4 +R1
3 R2 ↔ R4 7 (1/3)R4 11 1R4 +R2
4 1R2 +R4 8 −1R2 +R1 12 −2R4 +R3
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It happens that A′ = I4. Then we may conclude that A is non-singular.

(c) Let A =

 1 1 1 1
1 0 −1 0
3 4 4 3
2 2 1 1

.

We find the reduced row-echelon form A′ which is row-equivalent to A, say, through Gaussian elimination:

(α) : A = C1−→
ρ1

C2−→
ρ2

· · · −→
ρ8

C9−→
ρ9

C10 = A′

in which the ρk’s are given by:

k ρk k ρk k ρk
1 −1R1 +R2 4 R2 ↔ R3 7 1R3 +R4
2 −3R1 +R3 5 1R2 +R3 8 −1R2 +R1
3 −2R1 +R4 6 −1R3 9 −1R3 +R2

It happens that A′ =

 1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0

. Then we may conclude that A is singular.

Remark. In fact, C8 is a row-echelon form with an entire row of zeros. We can stop there and conclude
that A is singular. (Why?)

4. How to re-formulate the notion of non-singularity in terms of matrix multiplication?
Let A be an (n×n)-square matrix, and A′ be the reduced row-echelon form which is row-equivalent to A. We make
some observations with the help of the ‘dictionary’ between row operations and row-operation matrices:

(a) For such matrices A,A′, we have some sequence of row operations joining A to A′:

A = C1 −→
ρ1

C2 −→
ρ2

· · · · · · −→
ρp−2

Cp−1 −→
ρp−1

Cp = A′.

According to the ‘dictionary’ between row operations and row-operation matrices, for each j, there is some
(unique) (n× n)-square matrix Hj , namely, the row operation matrix for ρj , such that Cj+1 = HjCj .
Then A′ = Cp = Hp−1Cp−1 = Hp−1Hp−2Cp−2 = · · · = Hp−1 · · ·H2H1A.

(b) Now further suppose A is non-singular. Then, by Lemma (4), A′ = In.
Therefore there exist some (n× n)-square matrix H, namely, H = Hp−1 · · ·H2H1, such that HA = In.

We summarize the discovery in the above discussion in the form of Lemma (5).

5. Lemma (5). (Converse of Lemma (2).)
Let A be an (n× n)-square matrix.
Suppose A is non-singular. Then there exists some (n× n)-square matrix H such that HA = In.
Remark. Why do we call Lemma (5) a ‘converse of Lemma (2)’?
It is because Lemma (2) reads as:

Let A be an (n× n)-square matrix.
Suppose there exists some (n× n)-square matrix H such that HA = In. Then A is non-singular.

Combining Lemma (1), Lemma (2), Lemma (4) and Lemma (5), we obtain Theorem (A).

6. Theorem (A). (Re-formulation of non-singularity in terms of row operations, reduced row-echelon
forms and matrix multiplication.)
Let A be an (n× n)-square matrix. The statements below are logically equivalent:

(a) A is non-singular.
(b) For any vector v in Rn, if Av = 0 then v = 0.
(c) The trivial solution is the only solution of the homogeneous system LS(A, 0).
(d) A is row-equivalent to In.
(e) There exists some (n× n)-square matrix H such that HA = In.

7. Towards the notion of invertibility.
Now indeed suppose A is a non-singular (n × n)-square matrix, which, according to Theorem (A), will satisfy
HA = In for some appropriate (n× n)-square matrix H.
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(a) Question. How to write down such a matrix H explicitly?
Answer. According to our discussion leading up to Lemma (5), such a matrix H can be obtained as the
product H = Hp−1 · · ·H2H1 in which each Hj is the row operation matrix corresponding to the row operation
ρj in some sequence of row operations joining A to In:

(α) : A = C1 −→
ρ1

C2 −→
ρ2

· · · · · · −→
ρp−2

Cp−1 −→
ρp−1

Cp = In.

(b) Further question. But can we obtain H without multiplying so many matrices together?
Answer to further question. Yes. How?
Write H = Hp−1 · · ·H2H1In (as a sleight of hand), and think of how to interpret this product in terms of row
operations, according to the ‘dictionary’ between row operations and row operation matrices.
H1 is the resultant of the application of the row operation ρ1 on In.
H2H1 is the resultant of the application of the row operation ρ2 on H1.
H3H2H1 is the resultant of the application of the row operation ρ3 on H2H1. So forth and so on.
H is therefore the resultant of the sequence of row operations

(β) : In −→
ρ1

H1 −→
ρ2

H2H1 −→
ρ3

· · · · · · −→
ρp−2

Hp−2 · · ·H2H1 −→
ρp−1

Hp−1 · · ·H2H1 = H.

(c) Bonus. Again look at the sequence

(β) : In −→
ρ1

H1 −→
ρ2

H2H1 −→
ρ3

· · · · · · −→
ρp−2

Hp−2 · · ·H2H1 −→
ρp−1

Hp−1 · · ·H2H1 = H.

This tells us immediately that:
• In is row-equivalent to the (n× n)-square matrix H, and hence
• the (n× n)-square matrix H is also row-equivalent to In.

Then, by Theorem (A), the statements below all hold immediately and simultaneously for this matrix H:
• H is non-singular.
• For any vector u in Rn, if Hu = 0 then u = 0.
• The trivial solution is the only solution of the homogeneous system LS(H, 0).
• There exists some (n× n)-square matrix G such that GH = In.

So now we know that HA = In, and some matrix G satisfies GH = In.
(d) Question. What is the matrix G?

Answer. The matrix G can be nothing but A itself. Justification:
For such matrices A,G,H, we have G = GIn = G(HA) = (GH)A = InA = A.

Extra bonus. Therefore, for the same matrices A,H, it happens not only the equality HA = In holds, but
also the equality AH = In holds.

We have obtained something unexpected discovery from the ‘practical problem’ of computing the matrix H which
satisfies HA = In for the non-singular matrix A. We formulate this discovery as Lemma (6).

8. Lemma (6).
Let A be an (n× n)-square matrix.
Suppose A non-singular.
Then there exists some (n× n)-square matrix H such that H is non-singular, HA = In and AH = In.
Remark. The converse of Lemma (6) is the statement (♯):

(♯) Let A be an (n× n)-square matrix.
Suppose there exists some (n× n)-square matrix H such that H is non-singular, HA = In and AH = In.
Then A non-singular.

The statement (♯) is certainly true, by virtue of Theorem (A).
But how about statement (♭) below?

(♭) Let A be an (n× n)-square matrix.
Suppose there exists some (n× n)-square matrix H such that AH = In.
Then A non-singular.
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We are not so sure at this point, as we are assuming ‘less’ in Statement (♭) then in Statement (♯).
It will transpire that Statement (♭) is true as well, after more work is done.

9. Example (⋆⋆), as an illustration for Lemma (6).

Recall Example (⋆). Let A =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1

 .

We have the sequence of row operations

(α) : A = C1−→
ρ1

C2−→
ρ2

· · · −→
ρ17

C18−→
ρ18

C19 = A′,

in which the row operations ρk and the corresponding row-operation matrices Hk are given by:

k ρk Hk k ρk Hk k ρk Hk

1 2R1 +R2 I5 + 2E5,5
2,1 7 1R1 +R5 I5 + E5,5

5,2 13 −1R4 +R1 I5 − 1E5,5
1,4

2 −1R1 +R3 I5 − E5,5
3,1 8 1R3 +R4 I5 + E5,5

4,3 14 −1R4 +R2 I5 − E5,5
2,4

3 2R1 +R4 I5 + 2E5,5
4,1 9 −2R3 +R5 I5 − 2E5,5

5,3 15 1R4 +R3 I5 + E5,5
3,4

4 1R1 +R5 I5 + E5,5
5,1 10 −2R2 +R1 I5 − 2E5,5

1,2 16 −2R5 +R1 I5 − 2E5,5
1,5

5 1R2 +R3 I5 + E5,5
3,2 11 3R3 +R1 I5 + 3E5,5

1,3 17 1R5 +R2 I5 + E5,5
2,5

6 −1R2 +R4 I5 − E5,5
4,2 12 −2R3 +R2 I5 − 2E5,5

2,3 18 −1R5 +R3 I5 − E5,5
3,5

It happens that I5 = A′ = C19 = H18C18 = H18 · · ·H2H1A.
The matrix H = H18C18 = H18 · · ·H2H1 is the resultant of the application of the row operations ρ1, ρ2, · · · , ρ18 on
I5, and is explicitly given by

H =


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1

 .

It so happens that H is non-singular, HA = I5 and AH = I5.
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