MATH 4210 - Financial Mathematics

Interest rate, derivatives, arbitrage

- Interest rate
- Simple interest
- Compounded interest (discretely or continuously)
- (Net) Present Value, Loan formula, etc.
- Forward, Future,

$$
F(t, T)=S(t) e^{r(T-t)}
$$

- Arbitrage Opportunity

$$
\Pi(0)=0, \quad \Pi(T) \geq 0, \quad \mathbb{P}[\Pi(T)>0]>0
$$

- Vanilla options and No Arbitrage condition

Discrete time market

- Dynamic trading on a discrete time market

$$
V_{t_{k}}=e^{r t_{k}}\left(V_{t_{0}}+\sum_{i=0}^{k-1} \phi_{t_{i}}\left(\widetilde{S}_{t_{i+1}}-\widetilde{S}_{t_{i}}\right)\right)
$$

- Binomial tree model:
- Replication strategy
- Pricing under risk neutral probability measure
- Multiple steps

Continuous time market: stochastic calculus

- Brownian motion
- Heat equation
- Stochastic Integration, Itô's Lemma
- Memorise the formulas, know how to apply these formulas.
- The proofs are not required
- Black-Scholes model

$$
d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t}, \quad S_{t}=S_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}\right)
$$

Continuous time market: pricing, hedging

- Dynamic trading in continuous time market

$$
d \Pi_{t}=\phi_{t} d S_{t}+\left(\Pi_{t}-\phi_{t} S_{t}\right) r d t
$$

- Replication strategy leading to Black-Scholes PDE:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2} u}{\partial s^{2}}+r s \frac{\partial u}{\partial s}-r u=0 \\
u(T, s)=g(s)
\end{array}\right.
$$

- Probabilistic representation under risk neutral probability measure

$$
u\left(0, S_{0}\right)=\mathbb{E}^{\mathbb{Q}}\left[e^{-r T} g\left(S_{T}\right)\right] .
$$

- Deduce explicit Black-Scholes formula for Call/Put options, Carr-Madan formula.

Black-Scholes pricing

Recall that the price of a European option with payoff $g\left(S_{T}\right)$ is the solution of PDE

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2} u}{\partial s^{2}}+r s \frac{\partial u}{\partial s}-r u=0 \\
u(T, s)=g(s)
\end{array}\right.
$$

Or equivalently, it is given by

$$
u\left(0, S_{0}\right)=\mathbb{E}^{\mathbb{Q}}\left[e^{-r T} g\left(S_{T}\right)\right]
$$

where \mathbb{Q} is the risk neutral probability, under which the stock price follows:

$$
S_{T}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma B_{T}^{\mathbb{Q}}}
$$

for some \mathbb{Q}-Brownian motion $B^{\mathbb{Q}}$.

Monte Carlo method, an introduction

Let X be a random vector taking value in $\mathbb{R}^{d}, f: \mathbb{R}^{d} \rightarrow \mathbb{R},\left(X_{k}\right)_{k \geq 1}$ be a sequence of i.i.d. random vectors with the same distribution of X. Then the Monte-Carlo estimator of $\mathbb{E}[f(X)]$ is given by

$$
\bar{Y}_{n}:=\frac{1}{n} \sum_{k=1}^{n} Y_{k} \quad \text { where } Y_{k}:=f\left(X_{k}\right) .
$$

Monte Carlo method, an introduction

Let Y be a random variable, $\left(Y_{k}\right)_{k \geq 1}$ be a sequence of i.i.d. random variables with the same distribution of Y, and

$$
\bar{Y}_{n}:=\frac{1}{n} \sum_{k=1}^{n} Y_{k} .
$$

Theorem 2.1 (Law of large number)

Assume that $\mathbb{E}[|Y|]<\infty$, then

$$
\bar{Y}_{n} \rightarrow \mathbb{E}[Y] \text { almost surely as } n \rightarrow \infty .
$$

Theorem 2.2 (Central Limit Theorem)
Assume that $\mathbb{E}\left[|Y|^{2}\right]<\infty$, then

$$
\sqrt{n} \frac{\bar{Y}_{n}-\mathbb{E}[Y]}{\sqrt{\operatorname{Var}[Y]}} \Rightarrow \mathcal{N}(0,1) \text { in distribution. }
$$

Monte Carlo method, an introduction

- $\xi_{n} \Rightarrow N(0,1)$ in distribution means that

$$
\mathbb{P}\left[\xi_{n} \in[a, b]\right] \rightarrow \int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x
$$

- This implies that for n large enough

$$
\begin{aligned}
p(R):=\int_{-R}^{R} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x & =\mathbb{P}\left[\sqrt{n} \frac{\bar{Y}_{n}-\mathbb{E}[Y]}{\sqrt{\operatorname{Var}[Y]}} \in[-R, R]\right] \\
& =\mathbb{P}\left[\mathbb{E}[Y] \in\left[\bar{Y}_{n}-\frac{\sqrt{Y}}{n} R, \bar{Y}_{n}+\frac{\sqrt{Y}}{n} R\right]\right]
\end{aligned}
$$

We then obtain the confidence interval (with a confidence level $p(R)$):

$$
\left[\bar{Y}_{n}-\frac{\sqrt{\operatorname{Var}[Y]}}{\sqrt{n}} R, \bar{Y}_{n}+\frac{\sqrt{\operatorname{Var}[Y]}}{\sqrt{n}} R\right]
$$

Remark: for $R=2$, one has $p(R) \approx 95 \%$.

Monte Carlo method, an introduction

- In practice, we use the following estimator to estimate $\operatorname{Var}[Y]$:

$$
s_{n}^{2}:=\frac{1}{n} \sum_{k=1}^{n}\left(Y_{k}-\bar{Y}_{n}\right)^{2}=\frac{1}{n} \sum_{k=1}^{n} Y_{k}^{2}-\left(\bar{Y}_{n}\right)^{2}
$$

- In summary

1 Simulate an i.i.d. sequence $\left(X_{k}\right)_{k \geq 1}$, let $Y_{k}:=f\left(X_{k}\right)$.
2 The estimator:

$$
\bar{Y}_{n}:=\frac{1}{n} \sum_{k=1}^{n} Y_{k} .
$$

3 The confidence interval:

$$
\left[\bar{Y}_{n}-\frac{s_{n}}{\sqrt{n}} R, \bar{Y}_{n}+\frac{s_{n}}{\sqrt{n}} R\right]
$$

Simulation of random variables

- We accept that one has the generator for uniform distribution $\mathcal{U}[0,1]$.
- Inverse method: let $F: \mathbb{R} \rightarrow[0,1]$ be the distribution function of a random variable $X, U \sim \mathcal{U}[0,1]$, then

$$
X \sim F^{-1}(U) \text { in distribution. }
$$

- Transformation method (Box-Muller, not required): let U and V be two independent random variables of uniform distribution on $[0,1]$, let

$$
X:=\sqrt{-2 \log (U)} \cos (2 \pi V) \quad \text { and } \quad Y:=\sqrt{-2 \log (U)} \sin (2 \pi V) .
$$

Then X and Y are two independent random variable of Gaussian distribution $N(0,1)$.

Simulation of a brownian motion

Let B be a Brownian motion, using the independent and stationary increment property of the Brownian motion, we use the following algorithme to simulate a Brownian motion B at finite time instants $0=t_{0}<t_{1}<\cdots<t_{n}=T$:

- Simulate a sequence of i.i.d. random variables $\left(Z_{k}\right)_{k=1, \cdots, n}$ of distribution $N(0,1)$.
- Let $B_{t_{0}}=0$ and then the iteration:

$$
B_{t_{k+1}}=B_{t_{k}}+\sqrt{t_{k+1}-t_{k}} Z_{k+1}
$$

Variance reduction

- Main idea: to estimate $\mathbb{E}[f(X)]$, one find another function $g: \mathbb{R}^{d} \rightarrow R$ such that

$$
\mathbb{E}[g(X)]=\mathbb{E}[f(X)] \quad \text { and } \quad \operatorname{Var}[g(X)]<\operatorname{Var}[f(X)] .
$$

- Example (Antithetic method): let $S_{T}:=S_{0} \exp \left(\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma B_{T}\right)$, we define the antithetic variable

$$
A\left(B_{T}\right):=-B_{T} \sim B_{T} \quad \text { and } A\left(S_{T}\right):=S_{0} \exp \left(\left(r-\sigma^{2} / 2\right) T+\sigma A\left(B_{T}\right)\right),
$$

then

$$
\mathbb{E}\left[e^{-r T} f\left(S_{T}\right)\right]=\mathbb{E}\left[e^{-r T} g\left(S_{T}\right)\right] \text { for } g\left(S_{T}\right):=\frac{f\left(S_{T}\right)+f\left(A\left(S_{T}\right)\right)}{2}
$$

- There are many other methods allowing to find functions $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\mathbb{E}[g(X)]=\mathbb{E}[f(X)]$, further analysis are need to check if one has $\operatorname{Var}[g(X)]<\operatorname{Var}[f(X)]$.

Finite difference method

- The Black-Scholes PDE

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2} u}{\partial s^{2}}+r s \frac{\partial u}{\partial s}-r u=0 \\
u(T, s)=f(s)
\end{array}\right.
$$

- Time discretization of the interval $[0, T]$:

$$
0=t_{0}<t_{1}<\cdots t_{n}=T, \quad \text { where } t_{k}:=k \Delta t, \quad \Delta t:=\frac{T}{n} .
$$

- Space discretization of the interval $\left[R_{1}, R_{2}\right]$: for two integers $r_{1}<r_{2}$,

$$
R_{1}=s_{r_{1}}<s_{r_{1}+1}<\cdots<s_{r_{2}-1}<s_{r_{2}}=R_{2} .
$$

- Numerical solution $\hat{u}^{h}\left(t_{k}, s_{i}\right)$ on the grid $\left(t_{k}, s_{i}\right)$, let us denote

$$
\hat{u}_{i}^{k}:=\hat{u}^{h}\left(t_{k}, s_{i}\right)
$$

Finite difference method

- Numerical solution $\hat{u}^{h}\left(t_{k}, s_{i}\right)$ on the grid $\left(t_{k}, s_{i}\right)$, let us denote

$$
\hat{u}_{i}^{k}:=\hat{u}^{h}\left(t_{k}, s_{i}\right), \quad \Delta s=s_{i+1}-s_{i} .
$$

- Approximate the derivatives:

$$
\frac{\partial u}{\partial t}\left(t_{k}, s_{i}\right) \approx \frac{\hat{u}_{i}^{k}-\hat{u}_{i}^{k-1}}{\Delta t}, \quad \frac{\partial u}{\partial s}\left(t_{k}, s_{i}\right) \approx \frac{\hat{u}_{i+1}^{k}-\hat{u}_{i}^{k}}{\Delta s}
$$

and

$$
\frac{\partial^{2} u}{\partial s^{2}}\left(t_{k}, s_{i}\right) \approx \frac{\hat{u}_{i+1}^{k}-2 \hat{u}_{i}^{k}+\hat{u}_{i-1}^{k}}{\Delta s^{2}}
$$

- Plugging the above expression into the PDE, it leads to

$$
\hat{u}_{i}^{k-1}=A_{i} u_{i+1}^{k}+B_{i} u_{i-1}^{k}+C_{i} u_{i}^{k}
$$

Finite difference method

- The numerical scheme:

$$
\hat{u}_{i}^{k-1}=A_{i} \hat{u}_{i+1}^{k}+B_{i} \hat{u}_{i-1}^{k}+C_{i} \hat{u}_{i}^{k}
$$

where

$$
A_{i}=r s_{i} \frac{\Delta t}{\Delta s}+\frac{1}{2} \sigma^{2} s_{i}^{2} \frac{\Delta t}{\Delta s^{2}}, \quad B_{i}=\frac{1}{2} \sigma^{2} s_{i}^{2} \frac{\Delta t}{\Delta s^{2}},
$$

and

$$
C_{i}=1-A_{i}-B_{i}-r \Delta t .
$$

- The boundary condition $R_{1}=0$:

$$
u\left(t, R_{1}\right)=e^{-r(T-t)} f(0) \Longrightarrow \hat{u}_{r_{1}}^{k}=e^{-r(T-t)} f(0)
$$

on the right hand side $R_{2}=2 S_{0}$, for call option $f(s)=(s-K)_{+}$,

$$
\partial_{s} u\left(t, R_{2}\right)=1, \quad \Longrightarrow \quad \hat{u}_{r_{2}}^{k}=\hat{u}_{r_{2}-1}^{k}+\Delta s .
$$

Finite difference method

Theorem 2.3 (Not required)

Assume that $C_{i} \geq 0$ for all i. Then one has

$$
\hat{u}^{h} \longrightarrow u \text { as }(\Delta t, \Delta s) \longrightarrow 0 .
$$

Finite difference method

- We can rewrite the above scheme as follows:

$$
\begin{aligned}
\hat{u}^{h}\left(t_{k}, s_{i}\right) & =\mathbb{T}_{h}\left[\hat{u}^{h}\left(t_{k+1}, \cdot\right)\right]\left(t_{k}, s_{i}\right) \\
& =A_{i} \hat{u}^{h}\left(t_{k+1}, s_{i+1}\right)+B_{i} \hat{u}^{h}\left(t_{k+1}, s_{i-1}\right)+C_{i} \hat{u}^{h}\left(t_{k+1}, s_{i}\right)
\end{aligned}
$$

and one has the so-called consistency condition, i.e.

$$
\frac{\mathbb{T}_{h}\left[u\left(t_{k+1}, \cdot\right)\right]\left(t_{k}, s_{i}\right)-u\left(t_{k}, s_{i}\right)}{\Delta t} \longrightarrow \partial_{t} u+\frac{1}{2} \sigma^{2} s^{2} \partial_{s s}^{2} u+r s \partial_{s} u-r u,
$$

as $(\Delta t, \Delta x) \rightarrow 0$.

- More generally, for other numerical schemes satisfying the consistency condition, one may also prove the convergence.

A binomial tree scheme

The binomial tree method is given by

$$
\begin{aligned}
\hat{u}^{h}(t, s)= & \mathbb{T}_{h}\left[\hat{u}^{h}(t+\Delta t, \cdot)\right](t, s) \\
= & e^{-r \Delta t} \frac{e^{r \Delta t}-e^{-\sigma \sqrt{\Delta t}}}{e^{\sigma \sqrt{\Delta t}}-e^{-\sigma \sqrt{\Delta t}}} \hat{u}^{h}\left(t+\Delta t, s e^{\sigma \sqrt{\Delta t}}\right) \\
& +e^{-r \Delta t} \frac{e^{\sigma \sqrt{\Delta t}}-e^{r \Delta t}}{e^{\sigma \sqrt{\Delta t}}-e^{-\sigma \sqrt{\Delta t}}} \hat{u}^{h}\left(t+\Delta t, s e^{-\sigma \sqrt{\Delta t}}\right)
\end{aligned}
$$

One can check directly that it satisfies the consistency condition:

$$
\frac{\mathbb{T}_{h}\left[u\left(t_{k+1}, \cdot\right)\right](t, s)-u(t, s)}{\Delta t} \longrightarrow \partial_{t} u+\frac{1}{2} \sigma^{2} s^{2} \partial_{s s}^{2} u+r s \partial_{s} u-r u
$$

as $\Delta t \rightarrow 0$.

A binomial tree scheme

Theorem 2.4 (Not required)

For the binomial tree scheme, one has

$$
\hat{u}^{h} \longrightarrow u \text { as } \Delta t \longrightarrow 0 .
$$

