
MATH 2230A - HW 7 - Solutions
Full solutions at P.170-171 Q2, 4, 10; P.196 Q6

Commonly missed steps in Purple and common mistakes at the back

The Cauchy Integral Formulae (again) and the Taylor’s Theorem play a crucial role in this HW.
Through the solution, we use B(x, r), B(x, r), C(x, r) to denote open balls, closed balls and circles
(boundaries of balls) respectively.

Theorem 0.1 (Cauchy Integral Formula). Let f : Ω → C be holomorphic on a closed simply
connected domain Ω. Let z ∈ Ωo, the interior of Ω, then we have

2πif(z) =

∫
∂Ω

f(w)

w − z
dw

Theorem 0.2 (Generalized Cauchy Integral Formula). Let f : Ω → C be holomorphic on a closed
simply connected domain Ω. Then f is infinitely differentiable on Ω. Furthermore we have for all
n ∈ N and z ∈ Ωo, the interior of Ω that

1

n!
f (n)(z) =

1

2πi

∫
∂Ω

f(w)

(w − z)n+1
dw

Theorem 0.3 (Taylor’s Theorem). Let z0 ∈ C and r > 0. Let f : B(z0, r)→ C be holomorphic on
B(z0, r). Then f is a power series on B(z0, r). In particular, for all z ∈ B(z0, r), we have

f(z) =

∞∑
i=0

fn(z0)

n!
(z − z0)n

which is a power series centered at z0. Note that fn exists for all n ∈ N on B(z0, r) by the generalized
Cauchy Integral Formula and f (n)(z0) could be computed by the formula as well.

Remark. In fact it suffices to assume that f is holomorphic on B(z0, r) instead of its closure B(z0, r).
The latter in fact implies the former (which is demonstrated in the solution of P.196 Q6). Nonethe-
less, to be in line with the assumption of Cauchy Integral Formulae, the former is written here (as
in Lecture Note Sec 14.1).

Remark. Every time, we would be giving full solutions to selected problems only. Other problems
are provided with partial solutions. Please feel free to contact us if you need help on the solutions.

P.170 - 171

Solution. For 1(d). Take f(z) = cosh z and w = 0 to apply the generalized Cauchy Integral Formula.
For 1(e). Take f(z) = tan(z/2) and w = x0 to apply the generalized Cauchy integral formula. Please
do not forget to verify why you could use the generalized Cauchy Integral Formula on the chosen
f(z) and w.
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Solution. We write g(z) = 1/(z2 + 4) = 1/(z + 2i)2(z − 2i)2 by factorizing the denominator. Let
f(z) := 1/(z + 2i)2 and w := 2i. Then by standard arguments considering the denominator, f is
holomorphic everywhere except at −2i. Note that |−2i− i| = 3 > 2, so −2i /∈ B(i, 2). Hence f is
holomorphic on B(i, 2). In addition, |w − i| = |2i− i| = 1 < 2. Hence w ∈ B(i, 2). Therefore, the
generalized Cauchy Integral Formula can be applied on f and w. We then have,∫

C

g(z)dz =

∫
C

f(z)

(z − w)2
dz = 2πif ′(w) = 2πif ′(2i) = 2πi

[
−2

(z + 2i)3

]
z=2i

=
π

16

Solution. When z is inside C, that is , in the interior of the region bounded by C: let f(s) := s3 +2s.
Since f is polynomial, f is entire and hence is holomorphic on the closed region bounded by C, which
is simply connected. By z is inside C. Hence, we can apply the generalized Cauchy integral formula
to have

g(z) =

∫
C

s3 + 2s

(s− z)3
ds =

∫
C

f(s)

(s− z)3
ds =

2pii

2!
f (2)(z) = πi [6s]s=z = 6πiz.

When z is outside C: let hz(s) = s3+2s/(s−z)3. Note that h is holomorphic everywhere except at z,
but z is outside C. Therefore, h is holomorphic everywhere in the closed region bounded by C. Since
C is simply connected, we can apply the Cauchy-Goursat Theorem to have g(z) =

∫
C
hz(s)ds = 0.

Solution. The question does not make sense in the context for this course if f ′ is not analytic on the
closed region bounded by C. We assume it is (by perhaps assuming that f is analytic on a simply
connected open set containing the contour C). Then both are zero by the Cauchy Goursat Theorem.

Solution. Just follow the procedure in Section 56.
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Solution. Method 1
We first show that the second derivative of f is zero everywhere. Since f is entire, by the generalized
Cauchy integral formula, f is infinitely complex differentiabel everywhere. In particular, f ′′ exists
everywhere on C. We proceed to show f ′′(z) = 0 for all z ∈ C.
Fix z ∈ C. Take R ∈ R such that R > |z|. Since f is entire, f is holomorphic on B(0, R).
As z ∈ B(0, R), using the generalized Cauchy Integral formula, the triangle inequality and the
assumption, we then have

2πi

2!

∣∣∣f (2)(z)
∣∣∣ =

∣∣∣∣∣
∫
C(0,R)

f(w)

w − z
dw

∣∣∣∣∣
≤
∫
C(0.R)

|f(w)|
|w − z|

|dw|

≤
∫
C(0,R)

A|w|
|w| − |z|

|dw| =
∫
C(0,R)

AR

(R− |z|)3
|dw| = 2πAR2

(R− |z|)3

where C(0, R) is the circle centered at 0 with radius R. Note that 2πAR2

(R−|z|)3 = 2πA1/R
(1−|z|/R)3 → 0 as

R → ∞. Since the above inequality is true for all R > |z|, we have by Sandwich theorem that∣∣f (2)(z)
∣∣ = 0, which implies f (2)(z) = 0. Since z is arbitrary, we have f ′′ = 0 everywhere on C.

It remains to show that f is the desired form. Since f ′′ = 0, we have f ′ is a constant (which could
be proved by using the Cauchy-Riemann Equations to extend similar property on real derivatives
to the complex case). As anti derivatives differ by a constant (which could also be proved via the
CR equations) and linear polynomial clearly has constant derivatives, we can conclude that f is a
linear polynomial, that is f(z) = a1z + a2 for some a1, a2 ∈ C for all z ∈ C.

Lastly, by the assumption, we have |f(0)| ≤ A|0|. Hence f(0) = 0, which imples a2 = 0. We then
conclude that f(z) = a1z for all z ∈ C.

Method 2
We apply the Cauchy’s inequality directly to show that f ′′ = 0. Let z ∈ C and R > 0. Since f is an
entire function, f is analytic on B(z,R); we can apply Cauchy’s inequality to have that∣∣∣f (2)(z)

∣∣∣ ≤ 2!

R2
MR

where MR := maxω∈C(z,R) |f(w)|. Note that by triangle inequality, we have for all ω ∈ C(z,R) that
|w| = |w − z + z| ≤ R+ |z|. Hence by the assumption, we have∣∣∣f (2)(z)

∣∣∣ ≤ 2!

R2
MR =

2

R2
max

ω∈C(z,R)
|f(w)| ≤ 2

R2
max

ω∈C(z,R)
A|w| ≤ 2A

R2
max

ω∈C(z,R)
R+ |z| = 2A(R+ |z|)

R2

Note that limR→∞
2A(R+|z|)

R2 = 0. Since the inequality holds for all R > 0, we have by Squeeze

theorem,
∣∣f (2)(z)

∣∣ = 0, which implies f (2)(z) = 0. As z is arbitrary, we have f ′′ = 0. The remaining
is the same as Method 1 above.
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P.196

Solution. Use the hints to compute the derivatives for sinh(z) at z = πi. The result follows from
simple computations.

Solution. Let f(z) = tanh z = sinh z
cosh z = ez−e−z

ez+e−1 . We first compute the non-differentiable points of
f(z). Let z ∈ C. Then by considering the denominator f is not differentiable at z if and only if we
have

ez + e−z = 0⇔ e2z = −1⇔ 2z ∈ log(−1)⇔ 2z = (2n+ 1)πi∃n ∈ N
For all n ∈ N, define zn := (2n+ 1)πi/2. By the above {zn} is precisely the set of non-differentiable
points.

We proceed to claim that the Maclaurin series of f converges (point-wise) on B(0, π/2). First notice
that |zn| ≥ π/2 for all n ∈ N. Since {zn} is precisely the set of non-differentiable points, f is holo-
morphic on B(0, r) for all r < π/2. By Taylor’s theorem, the Maclaurin series, that is, the Taylor
series centered at 0 converges on B(0, r) for all r < π/2. Therefore the Maclaurin series converges
on
⋃
r<π/2B(0, r) = B(0, π/2).

Next, we claim that B(0, π/2) is the largest circle within which the Maclaurin series converges. Let
ε > 0. Note that f is not differentiable at z0 = πi/2 where |z0| = π/2 < π/2 + ε. Hence f is not
differentiable everywhere within any slignt enlargement B(0, π/2 + ε). It follows that B(0, π/2) is
the largest required circle.

Lastly, we compute the first two non-zero terms of the Maclaurin Series. Using f(z) = tanh z, f ′(z) =
sech2(z), f (2)(z) = −2 sech2(z) tanh(z), f (3)(z) = −2 sech4(z) + 4 sech2(z) tanh2(z), (please note the
negative sign in the second derivative) we can compute that f(0) = 0, f2(0) = 0 and the first two
non-zero terms being

f ′(0)z +
f (3)(0)

3!
z3 = z − 2z3

3!
z3 = z − 1

3
z3

Remark. As mentioned in the beginning of this solution, the Taylor’s Theorem used here assumes
require analyticity on a closed disk (as in the Lecture Note Sec 14.1). With that requirement,
you CANNOT directly apply the Taylor’s theorem on B(0, π/2) to conclude the Maclaurin series
converges inside the circle. It is because f(z) is NOT holomorphic on B(0, π/2)!
Nonetheless, it should be reminded that Taylor’s theorem could require only analyticity on an open
disk (as in the textbook Sec 62). The two formulations are equivalent. In fact careful readers should
see that the transition between the formulations is demonstrated in the above proof.

Solution. It follows from simple computations.
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Common Misktakes:

1. Some of you misunderstood the boundedness condition of a function and so misused the Li-
ouville’s Theorem: a function is bounded on a domain Ω if there exists a real constant M > 0
such that |f(z)| ≤ M for all z ∈ Ω. The constant M is independent of z. Therefore the
condition in P.170 Q10: ∃A > 0 such that for all z ∈ Ω |f(z)| ≤ A|z| does NOT imply that f
is bounded. As the ”bound” A|z| is dependent on the point z.

2. There is no mention of the Taylor’s Theorem in almost all of your homework. After the Funda-
mental Theorem of Cantour Integrals (concerning antiderivatives), Cauchy-Goursat Theorem
and the Cauchy Integral Formulae, the Taylor’s Theorem (and the Laurent’s Theorem) is the
next major theorem to have a solid understanding. You should remember their assumptions
and conclusions by heart so that you know when to use and not to use them.

3. Please revise the hyperbolic functions as well as techniques for solving exponential/ trigono-
metric equations. Many of you have missed a minus side in the third derivatives of tanh(z).
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