Problems: P.61-62: Q8, 9; P.70-71: Q1, 2, 3; P. 89: Q3, 4; P. 108: Q11. (8 Questions in total)

Textbook: Brown JW, Churchill RV(2014). Complex Variables and Applications, nineth edition, McGraw-Hill Education

We type here all the required problems *for your convenience only*. The presentation of the problems here may be different from the original one but the respective solution should be unaffected.

Remark. You can safely refer the theorem in Sec. 21 and the theorem in Sec. 23 below to Theorem 1.20 and Theorem 1.21 (P.19-20) of the Lecture Note respectively. The theorems are about characerizing complex differentiability via Cauchy-Riemann Equations.

You can also safely refer the Example 2 in Sec. 19 to Example 2 in P.17 of the Lecture note. This is about the differentiability of the conjugate function.

Please have a look at the respective section in the Lecture Note before attempting this HW.

1 (P.61-62 Q8). Using the method in Example 2, Sec. 19, show that f'(z) does not exist at any $z \in \mathbb{C}$ if

a)
$$f(z) = \operatorname{Re}(z)$$
 b) $f(z) = \operatorname{Im}(z)$

2 (P.61-62 Q9). Let f be a function on \mathbb{C} defined by

$$f(z) = \begin{cases} \frac{\overline{z}^2}{z} & z \neq 0\\ 0 & z = 0 \end{cases}$$

Consider f to map from the z-plane to the w- plane. Consider f at the point $z_0 = 0$. Denote $\Delta z := z - z_0$, and hence $\Delta w, \Delta x, \Delta y$ as usual

- (i). Show that $\frac{\Delta w}{\Delta z} = 1$ at each nonzero point on the real and imaginary axes in the Δz plane.
- (ii). Show that $\frac{\Delta w}{\Delta z} = -1$ on the line $\Delta y = \Delta x$ in the Δz plane.
- (iii). Hence, show that f'(0) does not exist.

3 (P.70-71 Q1). Using the theorem in Sec. 21, show that f'(z) does not exist at any point $z \in \mathbb{C}$ if f is defined by

- a) $f(z) = \overline{z}$ b) $f(z) = z \overline{z}$
- c) $f(z) = 2x + ixy^2$ d) $f(z) = e^x e^{-iy}$

where x, y denote Re z, Im z respectively.

4 (P.70-71, Q2). Using the theorem in Sec. 23, for each of the following functions f on \mathbb{C}

- (i). show that f'(z) and its derivative f''(z) exist everywhere on \mathbb{C}
- (ii). find f''(z).

a) f(z) = iz + 2 b) $f(z) = e^{-x}e^{-iy}$

c)
$$f(z) = z^3$$

d) $f(z) = \cos x \cosh y - i \sin x \sinh y$

where x, y denote Re z, Im z respectively.

5 (P.70-71, Q3). Using theorems in Sec. 21 and 23, for each of the following functions f on \mathbb{C} , determine where f'(z) exists and find the corresponding value for such z.

a) $f(z) = \frac{1}{z}$ b) $f(z) = x^2 + iy^2$ c) $f(z) = z \operatorname{Im} z$

where x, y denote $\operatorname{Re} z, \operatorname{Im} z$ respectively.

6 (P.89, Q3). Using the Caucy-Riemann equations and the theorem in Sec. 21, show that the function $f(z) = exp(\overline{z})$ is not analytic anywhere on \mathbb{C}

- 7 (P.89, Q4). Let $f(z) = exp(z^2)$.
 - (i). Give two proofs that the function f is entire, that is, complex differentiable (or holomorphic) on all of \mathbb{C} .
- (ii). Find the derivative of f.

8 (P.108, Q11). (Modified on 27 Sep). Using the Cauchy-Riemann equations and the theorem in Sec. 21, show that neither of the functions $z \mapsto \sin(\overline{z})$ and $z \mapsto \cos(\overline{z})$ are holomorphic (complex differentiable) everywhere on \mathbb{C} , that is, the functions are not entire functions.