MATH 2050C Mathematical Analysis I 2020-21 Term 2

Solution to Problem Set 11

5.3-2

Suppose $\lim x_n = x_0$. Then by the definition of continuity of f, g, we have

 $\lim f(x_n) = f(x_0), \quad \lim g(x_n) = g(x_n)$

Note by $x_n \in E$, we have $f(x_n) = g(x_n)$, hence

 $\lim f(x_n) = \lim g(x_n)$

So we have $f(x_0) = g(x_0)$, which implies $x_0 \in E$.

5.3 - 3

By the Maximum-Minimum Theorem 5.3.4, we can find $x_1, x_2 \in [a, b]$ with $f(x_1) = \max f(I), f(x_2) = \min f(I)$. We claim $f(x_1) \ge 0$ and $f(x_2) \le 0$.

Now if we suppose $f(x_1) < 0$, then since $f(x_1)$ is a supremum of f(I), for any $x \in [a, b]$, we have $f(x) \leq f(x_1)$. By the statement of problem, we can find $y \in [a, b]$ with $|f(y)| \leq \frac{1}{2}|f(x_1)|$. At least, we will have

$$-f(y) \le \frac{1}{2}(-f(x_1)) \implies \frac{1}{2}f(x_1) \le f(y) \implies f(x_1) < \frac{1}{2}f(x_1) \le f(y)$$

which contradicts with the facts that $f(x_1)$ is an upper bound of f(I).

Similarly, if we suppose $f(x_2) > 0$, we can find y with $\frac{1}{2}f(x_2) \ge f(y)$, which will implies $f(x_2) > f(y)$, which leads a contradiction with the fact $f(x_2)$ is a lower bound for f(I).

So in summary, we have $f(x_1) \ge 0$, $f(x_2) \le 0$. Hence, by Intermediate Value Theorem, we can find $c \in [x_1, x_2]$ or $c \in [x_2, x_1]$ (depending on which is bigger) such that f(c) = 0.

5.3-6

Define $g(x) = f(x) - f(x + \frac{1}{2})$. There are three cases for the value of g(0).

- If g(0) = 0, then $c = 0 \in [0, \frac{1}{2}]$ is a solution of $f(c) = f(c + \frac{1}{2})$.
- If g(0) > 0, then $g(\frac{1}{2}) = f(\frac{1}{2}) f(1) = f(\frac{1}{2}) f(0) = -g(0) < 0$. Hence by Intermediate Value Theorem, we can find $c \in [0, \frac{1}{2}]$ such that g(c) = 0. This means $f(c) = f(c + \frac{1}{2})$.
- If g(0) < 0, we have the similar proof to get $g(\frac{1}{2}) > 0$ and apply Intermediate Value Theorem to get g(c) = 0 for $c \in [0, \frac{1}{2}]$ and hence $f(c) = f(c + \frac{1}{2})$.

If we view the earth's equator as the unit circle $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 = 1\}$, the temperature function h is a continuous map from \mathbb{S}^1 to \mathbb{R} . On the other hand, \mathbb{S}^1 can be viewed as a interval [0, 1] by identify their end point. For example, let $\varphi : [0, 1] \to \mathbb{S}^1$ defined by

$$\varphi(t) = (\cos(2\pi t), \sin(2\pi t)).$$

Then $\varphi(0) = \varphi(1)$. So the function $f(t) = h(\varphi(t))$ is a continuous function from [0,1] to \mathbb{R} with f(0) = f(1). So we can find $c \in [0, \frac{1}{2}]$ such that $f(c) = f(c + \frac{1}{2})$. This means

$$h(\cos(2\pi c), \sin(2\pi c)) = h(\cos(2\pi (c + \frac{1}{2})), \sin(2\pi (c + \frac{1}{2})))$$
$$= h(-\cos(2\pi c), -\sin(2\pi c))$$

which means h has the same values at one pair of antipodal points on \mathbb{S}^1 .

5.3-17

We proof the following claim first.

If $f : [0,1] \to \mathbb{R}$ is continuous and has two different values a, b with a < b, then f cannot has only rational (or irrational) values.

Indeed, suppose $f(x_1) = a, f(x_2) = b$, then for any $c \in (a, b)$, by Intermediate Value Theorem, we can find $x_0 \in [x_1, x_2]$ or $[x_2, x_1]$ such that $f(x_0) = c$. By Density Theorem, we can always find a rational number in (a, b), and we can also find a irrational number in (a, b). So this means f has to take rational values and irrational values. So the claim is proved.

So from this claim, we can see that if f is not a constant, f will take at least two different values and we can write these two values as a, b with a < b and hence f has to take both rational and irrational values.

Hence if f has only rational (irrational) values, f has to be a constant.