MATH 2050 C Lecture 4 (Jan 21)
[Problem set 2 will be posted today, due next Friday.]
Goal: \mathbb{R} is a complete ordered field.
Completeness Property: Every $\phi \neq S \subseteq \mathbb{R}$ which is bounded above must have a supremum in \mathbb{R}. [Note: \mathbb{Q} fails this!] Last time, we proved:

Prop: $u=\sup S$ of
(1) $s \leq u, \forall s \in S$ (i.e. u is an upper bd)
(2) $\forall \varepsilon>0, \exists s^{\prime} \in S$ s.t. $u-\varepsilon<S^{\prime}\binom{$ i.e. u is the }{ smallest upper bd. }

Similarly, for infimum, we have:
Prop: $u=\inf S$ iff
(1) $s \geqslant u, \forall s \in S$ (i.e. u is an lower bd)
(2) $\forall \varepsilon>0, \exists s^{\prime} \in S$ s.t. $u+\varepsilon>S^{\prime}\binom{$ i.e. u is the }{ greatest lower bd. }

Q: What about the existence of infimum?
A: It follows from the completeness property.
Prop: Every $\phi \neq S \subseteq \mathbb{R}$ that is bounded below must have an infimum in \mathbb{R}.

Proof: Given $\Phi \neq S \subseteq \mathbb{R}$. consider the subset:

> Claim: \bar{S} is bd above.
> Since S is bald below, ide.

Pf of Claim:
\exists some lower bd. U of S

$$
\begin{aligned}
& \Leftrightarrow \quad u \leq s \quad \forall s \in S \\
& \Rightarrow \quad-u \geqslant-s \quad \forall s \in S
\end{aligned}
$$

$\Rightarrow-u$ is an upper bod for \bar{S} ie. \bar{S} is bad above.
By Completeness Property. Sup \bar{S} exists in \mathbb{R}.
Claim: inf S exists. $\inf S=-\sup \bar{S}$.
Pf of claim:
Check: $-\sup \bar{S}$ is a lower bd for S
This is the same by reversing the arguments of tho claim above.
Check: $-\sup \bar{S}$ is the greatest lower bd for S
Let $\varepsilon>0$ be fixed but arbitrary.
(Want to show: $\exists s^{\prime} \in S$ st. $\left.-\sup \bar{S}+\varepsilon>s^{\prime}\right)-(x)$
By (2) of supremum for \bar{S}.

$$
\sup \bar{S}-\varepsilon<\bar{S}^{\prime} \quad \text { for some } \bar{S}^{\prime} \in \bar{S}
$$

By deft, we wrote $\bar{s}^{\prime}=-S^{\prime}$ for some $S^{\prime} \in S$
So. $\sup \bar{S}-\varepsilon<-S^{\prime} \Rightarrow-\sup \bar{S}+\varepsilon>S^{\prime}$ for some $S^{\prime} \in S$
which is (*)

Archimedean Property: \mathbb{N} is NOT bod above.
Pf: Suppose NOT. ie. IN is bod above.
By Completeness Property, $\sup \mid \mathbb{N}=: u \in \mathbb{R}$ exists.
So, $u-1<n^{\prime}$ for some $n^{\prime} \in \mathbb{N}$.

$$
\Rightarrow \quad u<n^{\prime}+1 \in \mathbb{N}
$$

$\Rightarrow u$ is NOT an upper bd for \mathbb{N}° Contradiction!

Corollaries:
(i) $\inf \left\{\frac{1}{n}: n \in \mathbb{N}\right\}=0$

(ii) $\forall \varepsilon>0, \exists n \in \mathbb{N}$ s.t. $0<\frac{1}{n}<\varepsilon$
(iii) $\forall y>0 . \exists!n \in \mathbb{N}$ st. $n-1<y \leq n$ unique
Ex: Prove these!

