
MATH 2050A - HW 9 - Solutions
Commonly missed steps in Purple

Solutions

1 (P.148 Q8). Let f, g be real-valued, uniformly continuous functions on R. Show that the compo-
sition f ◦ g is uniformly continuous on R

Solution. Let ε > 0. Then by uniform continuity of f , there exists η such that |f(x)− g(y)| < ε
for all x, y ∈ R with |x− y| < η. Then by uniform continuity of g, there exists δ > 0 such that
|g(x)− g(y)| < η for all x, y ∈ R with |x− y| < δ.
Therefore, when x, y ∈ R with |x− y| < δ, we have |g(x)− g(y)| < η where g(x), g(y) ∈ R and
so |f(g(x))− f(g(y))| < ε, that is |f ◦ g(x)− f ◦ g(x)| < ε. The result follows by the definition of
uniform continuity.

2 (P.148 Q10). Let A ⊂ R be a bounded subset. Suppose f is a real-valued function uniformly
continuous on A. Show that f is bounded on A.

Solution.
Method 1: Proof by Contradiction
Suppose f were not bounded on A. Then there exists a sequence (xn) in A such that |f(xn)| ≥ n
(why?). Since A is bounded, then its closure A is bounded1. Therefore the closed and bounded
set A is compact. As (xn) is a sequence in A ⊂ A, it follows from the (sequential) definition of a
compact set that there exists a subsequence {xnk

} ⊂ {xn} such that xnk
→ x for some x ∈ A2. In

particular, since (xnk
) converges, it is a Cauchy sequence in A. By uniform continuity of f , (f(xnk

))
is a Cauchy sequence and therefore is bounded. Nonetheless, by the assumption |f(xnk

)| ≥ nk for
all k ∈ N and so the sequence is unbounded. Therefore contradiction arises. It must be the case
that A is bounded.
Method 2: Direct Proof
Since f is uniformly continuous on A, there exists δ > 0 such that |f(x)− f(y)| < 1 whenever
|x− y < δ| and x, y ∈ A.
Next we show that A can be covered by a finite union of open intervals with radius δ/23: note that
as in Method 1, A is compact. By the Heine-Borel Property, the open cover A ⊂

⋃
a∈AB(a, δ/2)

(why is this, which runs over a ∈ A instead of A, an open cover?) admits a finite subcover. Hence,

there exists a1, . . . , aN ∈ A where N ∈ N such that A ⊂ A ⊂
⋃N

i=1B(ai, δ/2).
Now take M := max{|f(xi)|}Ni=1. Finally, let a ∈ A, there exists 1 ≤ i ≤ N such that |a− ai| < δ/2.
By the definition of δ, we have by the triangle inequality that

|f(a)| ≤ |f(a)− f(ai)|+ |f(ai)| ≤ 1 +M

It follows that f is bounded by 1 +M where M is independent of the choice of a ∈ A.

1In fact if M > 0 is a bound for A, it is also a bound of A. The proof is as follows: Fix x ∈ A. Let ε > 0. Then
there exists a ∈ A such that |x− a| < ε. By triangle inequality, |x| < ε + |a| ≤ ε + M . It follows that |x| ≤ M as
ε → 0. This shows that M is a bound for A. In fact we can show further that sup |A| = sup

∣∣A∣∣ similarly. You may
use this fact without proof.

2Alternatively, you can apply the Bolzano-Weierstrauss Theorem on the bounded sequence (xn) directly without
considering compact sets. However, having a basic understanding of compact sets, you should be seeing that these
”two” proofs are really two sides of the same coin.

3This property is the so-called totally boundedness. A subset A ⊂ R is totally bounded if for all ε > 0, A can be
covered by a finite number of ε− balls. The Heine-Borel Property tells us that a subset of R is bounded if and only
if totally bounded. We leave the proof of the above fact as exercise.
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