Chapter 2

Change Of Variables

Let ¢ be a continuously differentiable function that maps [a, 8] into [a,b]. For every
continuous function f on [a, b], we have following change of variables formula :

/ flp y)dy = /:(B) f(z)dx . (2.1)

()
The formula comes from a direct application of the Fundamental Theorem of Calculus.
Let F(x) be a primitive function of f, that is, F" = f. Consider the composite function
g(y) = F(e(y)). By the chain rule,

9'(y) = F'le)y'(y) = fle)¢'(y) -

By the fundamental theorem of calculus,

B B8
9(8) - gla) = / J(y) dy = / ()@ (v) dy

On the other hand,

Hence the formula holds.

When ¢ maps [a, 8] bijectively onto [a, ], either ¢ is strictly increasing with p(«a) =
a, ¢(B) = b or it is strictly decreasing with ¢(a) = b, ¢(8) = a. In the first case ¢’ is
non-negative or in the second case non-positive. So (2.1) becomes the formula

/f D¢y \dy—/f (2:2)

In the first two sections we will extend (1.2) to higher dimension. In the last two
sections we consider an extension of (1.1).
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2.1 The Change Of Variables Formula

Let Dy and D, be two regions in R"”. (Here we are mainly concerned with n = 2,3.) A
bijective map from D; to D, is called a C*-diffeomorphism if it and its inverse are both
continuously differentiable.

For a differentiable map ® from D; to R", its Jacobian matriz V& is given by
(aq)l/axj)azaj = 1,27 e, N, that iS,

[0 O0%1]
61’1 8:En
0% ... 9%
0r, o,
0, 0P,
_5’x1 a$n_

The determinant of the Jacobian matrix is called the Jacobian of ®. It will be denoted
by Jq;.

By the Inverse Function Theorem, a C'-map from a region D in R" to R™ which is
one-to-one and whose Jacobian never vanishes sets up a C!-diffeomorphism between D
and its image ®(D). This fact will be used implicitly and frequently below.

Theorem 2.1. (Change of Variables Formula) Let ® be a C*-diffeomorphism from
Dy to D. For any continuous function f in D,

/D fla)dz= [ (@) a(w)]dy. (2.3)

Here dx and dy refer to the integration over an n-dimensional region. For n = 2, in
our usual notation, this formula reads as,

//Df(.x,y) dA(z,y) = //D1 F(@(u, v))|Jo (u, v)| dA(u, v)

and for n = 3,

// flx,y,2)dV(z,y, z //91f u, v, w))|Jo(u, v, w)| dV (u, v, w) .
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The integration formulas for the polar coordinates, cylindrical coordinates and spher-
ical coordinates are special cases of this theorem.

In the case of the polar coordinates, we take n = 2 and ®(r,0) = (rcosf,rsinf).
Then Jg = r > 0, so the formula (2.3) becomes

//Df(x,’y) dA(z,y) = /D1 f(rcosf,rsin@)rdA(r,0) .

In the case of the cylindrical coordinates, we take n = 3 and ®(r, 6, z) = (rcosd,rsin#, z).
Then Jg = r and (2.3) becomes

//fxy, )dV = / f(rcos@,rsind, z)rdV(r,0,z) .
1971

when
In the case of the spherical coordinates, we take n = 3 and
O(p, ¢, 0) = (psinpcosb, psinpsind, pcosp) , ¢ € [0,x], 0 €[0,27) .

Then Jgp = p?sinp > 0 and (2.3) becomes

// flz,y,2)dV = // f(psinpcosf, psin psiné, pcos )p sin dV (p, p, ) .
Q 91

We now explain the ideas behind (2.3).

We take n = 2 and D; a rectangle. A partition P = {R,;;} on D; introduces a
generalized partition {D;;} on D. Now, for a continuous function f in D, when the
partition P becomes very fine, by Theorem 1.10,

/DfdA ~ 3 fw)IDy
< X
o Z'f |RZJ||RU|

where p;; is a tag point in D;; and ®(g;;) = p;;. This is possible because ® is bijective.

Now, let us focus on a subrectangle R;;. Let (u,v), (u+h,v), (u,v+k), (u+h,v+k) be
the vertices of the subrectangle. (We have dropped the subscripts i, j for simplicity. (u,v)
should be (u;,v;) and h = Ax;, k = Ay;.) Its image D;; has vertices at ®(u,v), ®(u +
h,v), ®(u,v+ k), and ®(u+ h,v + k). By Taylor’s expansion,

O(u+ h,v) = ®(u,v) + ®,(u,v)h + higher order terms,
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O(u,v+ k) =P(u,v) + ®,(u,v)k + higher order terms,

and
O(u+ h,v+k)=®(u,v) + ®,(u,v)h + D,(u,v)k + higher order terms .

Ignoring the higher order terms, D;; is well approximated by the parallelogram with
vertices at ®(u,v), P(u,v) + Dy (u,v)h, ®(u,v) + ®,(u,v)k, and P(u,v) + D, (u,v)h +
®,(u,v)k. Recall that for a parallelogram spanned by two vectors (aj,as) and (b, by),
its area is given by |a1by — agb;|. Therefore, the area of our parallelogram is equal to
|Jo(u,v)|hk. As hk is just the area of R;

ijy S

Dl [Je(ui, v;) [k
‘Rij| hk

= [Jo(ui, v5)].

It follows that

Dl
Zf |RJ||RM‘ ~ Zf ql] ) Ja( ul,vj)HRm

Note that (u;,v;) is also a tag point in R;;. Applymg Theorem 1.11, as ||P|| — 0,

//Df(a:,y) dA(z,y) = //D1 f(@(u,v))|Jo|(u,v) dA(u,v) .

Similarly, in n = 3, the subrectangular box B;;; maps to a parallelepiped (2;;; under

® and the volume ratio
|2l
| Biji|

~ ‘J‘I’(Uiﬁvjvwk’)‘ :

In the following we look at some examples. We point out that in n = 2, 3, people like
to use another notation for the Jacobian matrix, for instance, Jg is written as

The variables in the numerator and denominator are respective the dependent and inde-
pendent variables. In the next section we will establish the useful relation:




2.1. THE CHANGE OF VARIABLES FORMULA 5

Example 2.1. Find the area of the region bounded by the curves y = z,y = 6z, 2y = 1
and xy = 5.

We make the region simpler by introducing the change of variables u = y/z and v = xy.
The rectangle (u,v) € [1,6] x [1, 5] is mapped to the region under @ : (u,v) — (x,y). The
map P can be determined by expressing z,y in terms of u,v. After a little manipulation,
we get © = Vou~l,y = /uv. The Jacobian is equal to 1/(—2u). It follows that the area

is given by
6 5
//1dxdy = //
D 1 J1
6 5
oy

= 2logh6 .

Iz, y)

dud
(w,0)| T

Q

1
_—2u dvdu

We point out one can determine the Jacobian without ®. Indeed, the Jacobian of the
inverse map is

O(u,v)
0(z,y)
By the relation above, the Jacobian of ® is 1/(—2u).

= —2y/x = —2u.

Example 2.2. Evaluate the iterated integral
1 11—z
/ / VTt y(y — 22)? dydz .
0o Jo

This is a double integral over the triangle with vertices at (0,0), (1,0) and (0, 1).
While the region of integration is simple enough, the integrand is a bit messy. Unlike the
first example, we simplify the integrand this time. Letting u = x + y and v = y — 2x,
the integrand becomes \/uv? but the region becomes the region bounded by the curves
x =0,y =0,2+y =1 which go over to u = v,2u+v = 0 and u = 1. The Jacobian of
the inverse map is

Therefore,

1 11—z 1 u 1
/ / VTt yly —22) dyde = / \/6025 dydx
o Jo

0 —2u

2
-
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2 Y Y
/ / \/je\/@ dxdy .
1 Jiy VI

The region is composed three sides given by y =z, 2y = 1 and y = 2. Or,
D={(z,y): 1)y <z <y, yel[l,2]}.

Let u = \/zy and v = /y/x or * = u/v,y = wv. The region goes over to the region
bounded by v = 1,u =1 and uv = 2. Or,

Dy ={(u,v): 1 <v<2/u, vell,2]}.

Example 2.3 Evaluate

We have

Therefore, our integral is equal to

2 r2/u 2
/ / ve' 22 dudu = 2e(e —2) .
1 J1 v

Next we look at some three dimensional examples.

Example 2.4 Evaluate

3 4 z=y/2+1 9 —
/ / / ( it + E) dxdydz .
0 Jo Jz=y/2 2 3

The region projected to the rectangle [0,3] x [0,4] in yz-plane and is simple enough.
Let t =x —y/2 € [0,1],y = y, 2 = z be the change of variables. The Jacobian is equal to
1. Therefore, this integral is equal to

3,4 pl
/ / / <t + f) dtdydz =12 .
o Jo Jo 3

Example 2.5. Find the volume of the ellipsoid x?/a® + y*/b* + 22/c* < 1.

Introducing the change of variables x = au,y = bv, 2z = cw, the ellipsoid is the image
of the unit ball B, u? 4+ v? + w? < 1. We have

o(z,y,2)
O(u,v,w)

Therefore, the volume of the ellipsoid is given by

4
/// 1 x abcdV (u,v,w) = =mwabe .
i 3

= abc .
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2.2 Proof Of The Formula

In this section we present a more detailed proof of (2.3). We will follow Prof Tom Wan’s
treatment. Further discussions can be found in M. Spivak’s book: Calculus on Manifolds.
To prepare for it, we need the following propositions.

Proposition 2.2. Let ®, : Dy — D; and ®5 : D3 — Dy be two C'-maps. Then & =
®, o Oy satisfies
Vo=V, -V, ,

(matriz product) and
Jo = Jo, Ja, .

Proof. Let x = ®1(y) and y = ®5(z) so that x = ®(z). We have
(I)l(Z) = (@1 @) q)z)z(Z) = (I)h'(q)gl(Z), cee ,(I)gn(Z)) .

By the Chain Rule,

0P i 8(I>
Z 17 Qk‘ Z)
8zj 8yk 82]
which is precisely the matrix product

The second formula follows from the property of the determinant: det AB = det A det B.
]

Proposition 2.3. Let ® : Dy — D be a C*-diffeomorphism. Then
J(I;.fl Jq;. - 1 .

In particular, Jo # 0 in D;.

Proof. We have ®~!(®(x)) = x. By Proposition 2.2 and using the fact that the Jacobian
matrix of the identity map is the identity matrix, V®~! . V® is equal to the identity
matrix, and the formula follows by taking determinant of the both sides. O

Proposition 2.4. Let &, : Dy — D; and ®5 : D3 — Dy be two C-diffeomorphisms and
O =&y 0Dy : D3 — Dy. Suppose (1.3) holds for @1 and ®5. Then it also holds for ®.

Proof. Let f and g be continuous in D; and D, respectively. By assumption, we have

. f(x)dx = . F(@1(y)) o, [(y) dy
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/D g(y) dy = /D 4(®2(2))| i, (2) da

As f(P1(y))|Jo,|(y) is continuous in Do, taking it to be g, we have

and

/D Fo0dx = [ @)1l dy
= [ H@@0) (@22 ] 2)

= . f(®(z))|Jo|(z)dz . ( Proposition 2.2)

Now let us restrict to n = 2.

Proposition 2.5. The change of variables formula (1.3) holds in the following two cases:
(a) ® is a C'-diffeomorphism of the form ®(u,v) = (¢(u,v),v) in D; and

(b) @ is a C'-diffeomorphism of the form ®(u,v) = (u, ¥ (u,v)).

Proof. We prove (a) while (b) can be proved in a similar way. We will take D to be a
rectangle [a, b] X [c,d]. First of all, the Jacobian of ® is equal to dp/du. By Proposition
2.3, either 0p/du > 0 or dp/du < 0 throughout D. Assume it is the former. Under @,
the vertical line (u,v), where u € [a,b] is fixed, is mapped to (p(u,v),v). This is the

graph of ¢(u,-) over [e,d]. Since for each fixed v, v, > 0, p(u1,v) < @(ug,v) for u; < us,
the image of D under ¢ is of the form:

{(z,y): pla,y) <z <@by), y=veled}

By Fubini’s theorem,

/@(D)f(:r,y)dA - //ay) (2,y) dxdy
= //f(w(u,y),y)aﬁdud%
_ //f 4, 0) (’pdudv

_ //Df(@(u,m)w(u,v)dA<u,v).

Note that at the second line, we have used the change of variables = p(u,y) so that
dx = p,du.
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When dp/0u < 0, (D) becomes

{(,y) : @(by) <x < w(a,y), y="v € [cd]}.

Similarly as above, we have

/q}(D)f(x,y)dA _ /d/: F(@,y) dady
- // SOduczy,
B // 3

- //f( (u, 0)) | (1, ) dA(u, )

dudv

O

Now we prove the Change of Variables Formula (1.3) for a general ®. For simplicity
we will only consider n = 2 and take D; to be a rectangle. The general case is essentially
the same. First of all, since ® = (1, ¢3) is a C''-diffeomorphism, its Jacobian

Ty — 01 Opy _ i1 Opa
*7 Ou v ov Ou

never vanishes. Therefore, either dy;/0u or dp;/0v is not zero at any point. We can fix
a partition on D so fine that each subrectangle R;; belongs to either A or B where

0
.,4: {Rij: ﬁ > 01n R”},

ou
and
0
B = {Rl] : 501 < 0in RZ]}
Using

// F(® (1, 0)) sl (1, ) dA

Z//f uv|J¢uvdA+Z//f (u, )| Js|(u,v) dA

R;;eA R;eB

we see that it suffices to establish the formula under the additional assumption R € A or
R € B. (We have written R for R;; for simplicity.)
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Let us only consider R € A . (The other case can be handled in a similar way.)
We consider the maps ®;(u,v) = (¢1(u,v),v) and $y(s,t) = (s, h(s,t)) where h(s,t) =
o @1 (s,1). Since Jp, = dp1/0u # 0, ; is a C'-diffeomorphism from R onto its image.
In particular, the inverse map ®; ' exists. Now,

Do (P1(u,v)) = Palpr(u,v),v)
= (@1(“70) h
= (()01<U’7 U)vh
= (pa(u,0), 0
= D(u,v) .

By Propositions 2.4 and 2.5 , we see that (2.3) holds for .

2.3 A Different Extension

In this section we present a different extension of the change of variables formula (2.1) to
higher dimensions. It applies to a restricted class of functions.

Theorem 2.6. Let ® be a C'-map from R™ to R",n > 2, such that ®(x) = x for all
x, || > R for some number R. For every continuous function f which vanishes outside
some bounded set,

IR{nf(w) dx = Rnf(@(y))Jq>(y) dy .

The main difference between this theorem and Theorem 2.1 is that now there is no
need to take the absolute value of the Jacobian. Note that since f vanishes outside some
bounded set, the integration is in fact over a large rectangle; it is not an improper integral.

We will prove this theorem for the special case n = 2, that is,

/ [ 1wpaaey) - / [ 1@ 0) s dA(0) (2.4)

The proof of the general case is essentially the same, see

P. Lax, Change of variables in multiple integrals, The American Mathematical Monthly,
vol 106, 497-501, 2013.

Proof. We write ®(u,v) = (x(u,v),y(u,v)). To start, let us fix some large a > 0 such
that ® becomes the identity map and f vanishes outside the square S = [—a, a] X [—a, a].
Define

o(z,y) = / " tydt
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so that

0

Letting ®(u,v) = (x(u,v), y(u,v)), we have

//RQ F(®(u,v))Jp dA(u,v)
- // F(@(u,v))Js dA(u, v)

- /—a Ca (95( z(u,v),y(u,v)) det [xz

= / / det | v a:”] dudv
—a J —a _gyyu gyyv

— / / det T v ] dudv
—a J —a _gyyu+gm$u gyyv+gxxv

- [ (o), (0. 0) a%gm(u,v),yw,v))] i

_ /_ /_ (wu%g(x(u,v),y(u,v)) —mv%g(:v(u,v),y(u,v))) dudv

x”} dudv
Yo

Now,
/_Z /_Z xuﬁg(x(“’ v), y(u,v)) dudv
N / / ‘”"_9 (u,0), y(u, v)) dvdu
— /_a /_Z Tuwg(2(u,v),y(u,v)) dudv + /_Z T,9(x(u,v), y(u,v)) z:ia du .
Similarly,

/_C; /_Z xv%g(x(w v),y(u,v)) dudv

—/_C; /_C; Tywg(x(u,v), y(u,v)) dudv + /_a T,9(x(u,v), y(u, v)) o

a u=—a

As @ is equal to the identity on the boundary of S, in particular we have (z(u, +a), y(u, £a)) =

(u,£a) on the two horizontal sides of S. It follows that z,(u,+a) = 1. On the other
hand, (z(+a,v),y(+a,v)) = (£a,v) on the two verical sides of S, hence z(+a,v) = +a
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and x,(+a,v)) = 0. Therefore,

/ f(@(u,v))Jo dA(u,v)

R2

= / / Tuwg(x(u,v), y(u, v) dudv—i—/ z.g(x ,y(u,v)) MY
/ / Tuwg(x(u,v), y(u, v) dudv+/ zyg(z ,y(u,v)) T

_ / 2ug(o(u,v), y(u, )| du

v=—a

-/ (9w, @) — glu, —a)) du

—a

- /_a g(u,a)du (as g(u,—a) = 0)

_ /_ :;f(u,t)dt
- // f(@,y) dA(z, )

- /RQ f({L‘,y)dA([E,y) .
]

In one step the second partial derivative x,, is involved, but it can be removed easily
by an approximation argument.

A consequence of this theorem is

Proposition 2.7. The map ® in Theorem 2.6 maps R™ onto R™.

Proof. Suppose not, the image of R” under ® is not the entire R™. Since ® is the identity
map outside the ball Bg(0), the image must miss at least a point X, |xg| < R. By the
continuity of ®, actually there is a small ball B(xg) which is not contained in the image,
that is, ®(R™) N B(xp) = ¢. We pick a continuous function g which is positive inside
B(xg) but vanishes outside B(x(). By Theorem 2.6,

/ng(x) dx = / 9(2(y)) Ja(y) dy

The left hand side of this formula

/ng<x>dx=é(z0)g<x>dx>o.
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However, its right hand side vanishes because ®(R™) N B(x() = ¢ and g vanishes outside
B(xg), contradiction holds. O

2.4 Brouwer’s Fixed Point Theorem

A nice application of the previous extension is a proof of Brouwer’s fixed point theorem.
This fundamental theorem was proved first by Brouwer using algebraic topology in 1911
and was hailed as a triumph of this new branch of mathematics. Nowadays, we know it
could also be proved by analytic methods.

Theorem 2.8. (Brouwer’s Fired Point Theorem) Let B be the ball {x: |x| < 1}
in R™. A continuous map G : B — B admits a fized point, that is, there is some z € B
such that G(z) = z.

Remarks 2.1.

(a). Consider a rotation on B in the plane. Clearly, the origin is its only fixed point. On
the other hand, the reflection (z,y) — (2, —y) has the set {(x,0),z € [-1,1]} to be its
fixed point set.

(b). Let D be a region which can be mapped onto the ball by a continuous bijective
map H. (That is, D is homeomorphic to the ball.) For a continuous map ® on D to D,
the map Ho®o H~! is a continuous map on B to B. One readily checks that H~1(z) is a
fixed point of ® whenever z is a fixed point for H o®o H~!. Hence the property of having
a fixed point is preserved under any homeomorphism. In other word, it is a “topological
property”.

(c). Any rotation on the annulus {z : 1 < |z| < 2} does not admit any fixed point. It is
obvious that the annulus cannot be homeomorphic to the ball.

Proof. Suppose on the contrary, there is a continuous map G on B to itself which does not
admit any fixed point, that is, G(x) # x for all x € B. For a point x lying in the interior
of B, the line segment connecting G(x) to x can be extended and hits the boundary of B
at a point y. When x lies on the boundary of B, set y = x. Then the map x + y forms
a continuous map from B to 0B, the boundary of B, and is equal to the identity on JB.
We extend this map to the outside of B to be the identity map. In this way, we obtain a
continuous map ® from R” to R™ which misses the interior of B, but this is contradictory
to Proposition 2.7. We conclude that G' must admit at least one fixed point. O]

A careful reader may find a gap in the proof above: The map @ is only continuous,
while in order to apply Proposition 2.7 one needs ® to be C'. Again this defect can be
remedied by some approximation arguments. We will not dwell on this point.



