MATH2010 Advanced calculus, 2020-21
 HOMEWORK 3
 Suggested Solution

1. (a) Let $u=t x$ and $v=t y$ and take the derivative with respect to t of the equation $f(t x, t y)=t^{n} f(x, y)$. By Chain Rule, we have

$$
\begin{aligned}
\frac{\partial}{\partial t} f(u, v) & =\frac{\partial}{\partial t} t^{n} f(x, y) \\
\frac{\partial f(u, v)}{\partial u} \frac{\partial u}{\partial t}+\frac{\partial f(u, v)}{\partial v} \frac{\partial v}{\partial t} & =n t^{n-1} f(x, y) \\
x \frac{\partial f(u, v)}{\partial u}+y \frac{\partial f(u, v)}{\partial v} & =n t^{n-1} f(x, y)
\end{aligned}
$$

Now let $t=1$, and we will have

$$
x \frac{\partial f(x, y)}{\partial x}+y \frac{\partial f(x, y)}{\partial y}=n f(x, y)
$$

(b) Following (a), we take derivative once more.

$$
\frac{\partial}{\partial t}\left(x \frac{\partial f(u, v)}{\partial u}+y \frac{\partial f(u, v)}{\partial v}\right)=\frac{\partial}{\partial t}\left(n t^{n-1} f(x, y)\right)
$$

We have

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(x \frac{\partial f(u, v)}{\partial u}\right) & =x\left(\frac{\partial^{2} f(u, v)}{\partial^{2} u} \frac{\partial u}{\partial t}+\frac{\partial^{2} f(u, v)}{\partial u \partial v} \frac{\partial v}{\partial t}\right) \\
& =x^{2} \frac{\partial^{2} f(u, v)}{\partial^{2} u}+x y \frac{\partial^{2} f(u, v)}{\partial u \partial v}
\end{aligned}
$$

And similarly,

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(y \frac{\partial f(u, v)}{\partial v}\right) & =y\left(\frac{\partial^{2} f(u, v)}{\partial v \partial u} \frac{\partial u}{\partial t}+\frac{\partial^{2} f(u, v)}{\partial^{2} v} \frac{\partial v}{\partial t}\right) \\
& =x y \frac{\partial^{2} f(u, v)}{\partial v \partial u}+y^{2} \frac{\partial^{2} f(u, v)}{\partial^{2} v}
\end{aligned}
$$

Combining these equations, we have

$$
x^{2} \frac{\partial^{2} f(u, v)}{\partial^{2} u}+2 x y \frac{\partial^{2} f(u, v)}{\partial u \partial v}+y^{2} \frac{\partial^{2} f(u, v)}{\partial^{2} v}=n(n-1) t^{n-2} f(x, y)
$$

The proof is finished by letting $t=1$.
2. The curve passes the point $(0,0,1)$ exactly when $t=1$. First calculate the velocity,

$$
r^{\prime}(t)=\left(\frac{1}{t}, 1+\ln t, 1\right), r^{\prime}(1)=(1,1,1)
$$

Next we define the function $f(x, y, z)=x z^{2}-y z+\cos x y$.
We know that the gradient ∇f is perpendicular to the level sets of f, in particular to the surface $f(x, y, z)=1$. Hence we calculate

$$
\begin{aligned}
f_{x}(x, y, z) & =z^{2}-y \sin x y \\
f_{y}(x, y, z) & =-z-x \sin x y \\
f_{z}(x, y, z) & =2 x z-y
\end{aligned}
$$

Hence we have

$$
\nabla f(0,0,1)=\left(f_{x}, f_{y}, f_{z}\right)(0,0,1)=(1,-1,0)
$$

The conclusion holds by noting that the point $(0,0,1)$ lies on the curve and the surface, and that the gradient of f is perpendicular to the velocity of the curve at this point, i.e.

$$
<\nabla f(0,0,1), r^{\prime}(1)>=0
$$

3. (a) We need to compare the values of f at critical points and boundary points.

$$
\nabla f(x, y, z)=\left(f_{x}, f_{y}\right)=(2 x+y-6, x+2 y) .
$$

Let $\nabla f(a, b)=0$. We have $(a, b)=(4,-2)$ and $f(4,-2)=-12$.
Next consider $x=0$. Then $f(0, y)=y^{2}$ for $-3 \leq y \leq 3$. Easy to see the candidates for maxima and minima are $f(0,0)=0$ and $f(0,-3)=f(0,3)=9$.

Consider $x=5$. Then $f(5, y)=y^{2}+5 y-5=\left(y+\frac{5}{2}\right)^{2}-\frac{45}{4}$ for $-3 \leq y \leq 3$. The candidates are $f\left(5,-\frac{5}{2}\right)=-\frac{45}{4}$ and $f(5,3)=19$.

Consider $y=3$. Then $f(x, 3)=x^{2}-3 x+9$ for $0 \leq x \leq 5$. The candidates are $f\left(\frac{3}{2}, 3\right)=\frac{27}{4}$ and $f(5,3)=19$.

Consider $y=-3$. Then $f(x,-3)=x^{2}-9 x+9$ for $0 \leq x \leq 5$. The candidates are $f\left(\frac{9}{2},-3\right)=-\frac{45}{4}$ and $f(0,-3)=9$.

Comparing all the candidates, we conclude that the absolute maxima is $f(5,3)=$ 19 and the absolute minima is $f(4,-2)=-12$.
(b) First calculate the gradient of f, for $x>0$ and $y>0$,

$$
\nabla f(x, y)=\left(e^{-(2 x+3 y)}(-12 x y+6 y), e^{-(2 x+3 y)}(-18 x y+6 x)\right)
$$

Let $\nabla f(a, b)=0$. We have $(a, b)=\left(\frac{1}{2}, \frac{1}{3}\right)$ and $f\left(\frac{1}{2}, \frac{1}{3}\right)=e^{-2}$.
When $x y=0$, we have $f(x, y)=0$.
Note that $f\left(x, y_{0}\right)$ tends to 0 as x tends to $+\infty$ for any fixed positive y_{0}. Similarly, $f\left(x_{0}, y\right)$ tends to 0 as y tends to $+\infty$ for any fixed positive x_{0}.

Hence we can conclude that the absolute maxima is $f\left(\frac{1}{2}, \frac{1}{3}\right)=e^{-2}$. The absolute minima is 0 attained on the axes.

