MATH2010 Advanced calculus, 2020-21 HOMEWORK TWO
 Suggested Solution

1. (a) We need to find all r such that w satisfies the differential equation. Note that

$$
\begin{aligned}
w_{x x} & =\frac{1}{c^{2}} w_{t} \\
\frac{d}{d x}\left(\pi e^{r t} \cos \pi x\right) & =\frac{r}{c^{2}} e^{r t} \sin \pi x \\
-\pi^{2} e^{r t} \sin \pi x & =\frac{r}{c^{2}} e^{r t} \sin \pi x
\end{aligned}
$$

Comparing two sides of the equation, we have $r=-(c \pi)^{2}$.
Obviously the function $w(x, t)=e^{-c^{2} \pi^{2} t} \sin (\pi x)$ satisfies the differential equation.
(b) We need to determine all r and k.

Comparing two sides of the equation, we have $r=-(c k)^{2}$, similar as in (a). By $0=w(L, t)=e^{-c^{2} k^{2} t} \sin (k L)$, we have $k L=n \pi$, for $n \in \mathbf{Z}$ as $e^{-c^{2} k^{2} t}>0$.
Hence, it is direct to check that the following is all the solutions in the required form,

$$
w(x, t)=e^{-\frac{n^{2} c^{2} \pi^{2}}{L^{2}} t} \sin \left(\frac{n \pi}{L} x\right), \forall n \in \mathbf{Z}
$$

The solutions will tend to 0 as t tends to ∞.
2. (a) Differentiable, and hence also continuous.

Note that the partial derivatives $\frac{\partial}{\partial x} f(x, y)=\sin y$ and $\frac{\partial}{\partial y} f(x, y)=x \cos y$ exist and are continuous on \mathbf{R}^{2}. Hence f is \mathcal{C}^{1}. It follows that f is differentiable, and hence also continuous.
(b) Continuous but not differentiable.

Since f is a composition of the continuous function $x y$ and the absolute value function, f is continuous. For differentiability, note that $f(x, 1)=|x|$, so $\frac{\partial}{\partial x} f(0,1)$ does not exist. Hence, f is not differentiable at $(0,1)$ and so is not a differentiable function on \mathbf{R}^{2}.
(c) Continuous but not differentiable.

Clearly $f(x, y)$ is continuous for $x \neq 0$. Consider any point $\left(0, y_{0}\right)$ on the y-axis. Note that

$$
-|x y| \leq|f(x, y)| \leq|x y| \quad \text { and } \quad \lim _{(x, y) \rightarrow\left(0, y_{0}\right)}|x y|=0 .
$$

By sandwich theorem,

$$
\lim _{(x, y) \rightarrow\left(0, y_{0}\right)} f(x, y)=0=f\left(0, y_{0}\right)
$$

Hence, f is also continuous at $\left(0, y_{0}\right)$. For differentiability, note that

$$
\frac{\partial}{\partial x} f(0,1)=\lim _{h \rightarrow 0} \frac{f(h, 1)-f(0,1)}{h}=\lim _{h \rightarrow 0} \frac{h \sin \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0} \sin \frac{1}{h}
$$

does not exist. Hence, f is not differentiable at $(0,1)$ and so is not a differentiable function on \mathbf{R}^{2}.
(d) Continuous but not differentiable.

Clearly f is continuous for $(x, y) \neq(0,0)$. By using polar coordinates,

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} f(x, y) & =\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} \\
& =\lim _{r \rightarrow 0} \frac{r^{4} \cos ^{2} \theta \sin ^{2} \theta}{r^{3}} \\
& =\lim _{r \rightarrow 0} r \cos ^{2} \theta \sin ^{2} \theta \\
& =0 \quad \text { (by sandwich theorem) } \\
& =f(0,0) \quad
\end{aligned}
$$

Hence, f is continuous on \mathbf{R}^{2}.
We will show $f(x, y)$ is not differentiable at $(0,0)$. Since $f(x, y)=0$ for $x=0$ or $y=0$, we have $\frac{\partial}{\partial x} f(0,0)=\frac{\partial}{\partial y} f(0.0)=0$.
Hence the linear approximation of f at $(0,0)$ is given by

$$
L(x, y)=f(0,0)+\frac{\partial f}{\partial x}(0,0)(x-0)+\frac{\partial f}{\partial y}(0,0)(y-0)=0 .
$$

It follows that

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-L(x, y)}{\sqrt{x^{2}+y^{2}}} & =\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\lim _{r \rightarrow 0} \frac{r^{4} \cos ^{2} \theta \sin ^{2} \theta}{r^{4}} \\
& =\lim _{r \rightarrow 0} \cos ^{2} \theta \sin ^{2} \theta
\end{aligned}
$$

does not exists as it depends on θ.
3. From the definition and the limit equation of the error ϵ, we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h} & =\lim _{h \rightarrow 0} \frac{\epsilon\left(x_{0}+h, y_{0}\right)+r\left(x_{0}+h-x_{0}\right)+s\left(y_{0}-y_{0}\right)}{h} \\
& =r+\lim _{h \rightarrow 0} \frac{\epsilon\left(x_{0}+h, y_{0}\right)}{h}=r .
\end{aligned}
$$

By the definition of the partial derivative, we have $r=f_{x}\left(x_{0}, y_{0}\right)$. Similarly,

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h} & =\lim _{h \rightarrow 0} \frac{\epsilon\left(x_{0}, y_{0}+h\right)+r\left(x_{0}-x_{0}\right)+s\left(y_{0}+h-y_{0}\right)}{h} \\
& =s+\lim _{h \rightarrow 0} \frac{\epsilon\left(x_{0}, y_{0}+h\right)}{h}=s .
\end{aligned}
$$

We have $s=f_{y}\left(x_{0}, y_{0}\right)$.

