MATH2010 Advanced Calculus I, 2020-21 HOMEWORK THREE

Due 3pm Monday, Nov. 23

Q1. A function $f(x, y)$ is homogeneous of degree n (n a nonnegative integer) if $f(t x, t y)=t^{n} f(x, y)$ for all t, x, and y. For such a smooth function, prove that
(a) $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f(x, y)$.
(b) $x^{2}\left(\frac{\partial^{2} f}{\partial x^{2}}\right)+2 x y\left(\frac{\partial^{2} f}{\partial x \partial y}\right)+y^{2}\left(\frac{\partial^{2} f}{\partial y^{2}}\right)=n(n-1) f$.

Q2. Show that the curve

$$
\vec{r}(t)=\langle\ln t, t \ln t, t\rangle
$$

is tangent to the surface

$$
x z^{2}-y z+\cos x y=1
$$

at $(0,0,1)$.
Q3. Find the absolution maxima and minima of the functions on the given domains.
(a) $f(x, y)=x^{2}+x y+y^{2}-6 x$ on the rectangular plate $0 \leq x \leq 5$, $-3 \leq y \leq 3$.
(b) $f(x, y)=6 x y e^{-(2 x+3 y)}$ in the closed first quadrant (includes the nonnegative axes).

