MATH2010 Advanced Calculus I, 2020-21
 HOMEWORK ONE

Due 3pm Monday, Oct. 12

Q1. Find the angle between the diagonal of a cube and one of the edges it meets. In particular, is it greater or less than $\pi / 4$?

Q2. (a) Use vectors to show that the distance from $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $A x+B y+C z=D$ is

$$
d=\frac{\left|A x_{1}+B y_{1}+C z_{1}-D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

(b) Find an equation for the sphere that is tangent to the planes $x+y+$ $z=3$ and $x+y+z=9$ if the planes $2 x-y=0$ and $3 x-z=0$ pass through the center of the sphere.

Q3. (a) At what times in the interval $0 \leq t \leq \pi$ are the velocity and acceleration vectors of the motion $\vec{r}(t)=\mathbf{i}+(5 \cos t) \mathbf{j}+(3 \sin t) \mathbf{k}$ orthogonal?
(b) Write an integral for the total distance travelled in the time interval $0 \leq t \leq \pi$. (Do not try to evaluate the integral.)

Q4. Evaluate the following limits or show they do not exist.
(a) $\lim _{(x, y) \rightarrow(2,-4)} \frac{y+4}{x^{2} y-x y+4 x^{2}-4 x}$
(b) $\lim _{(x, y) \rightarrow(0,0)}\left(2 x^{2}+y^{2}\right) \sin \frac{1}{\sqrt{x^{2}+4 y^{2}}}$.
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{5} y^{2}}{x^{10}-y^{4}}$.
(d) $\lim _{(x, y) \rightarrow(1,-1)} \frac{x y+1}{x^{2}-y^{2}}$
(e) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x}{x^{2}+x+y^{2}}$

