Chapter 11: Ordinary Differential Equations

Learning Objectives:

(1) Solve first-order linear differential equations and initial value problems.
(2) Explore analysis with applications to dilution models.

1 Ordinary Differential Equations

Definition 1.1. An ordinary differential equation (ODE) is an equation involving one or more derivatives of an unknown function $y(x)$ of 1 -variable. A differential equation for a multi-variable function is called a "partial differential equation" (PDE).

The order of an ordinary differential equation is the order of the highest derivative that it contains.

Example 1.1.

DIFFERENTIAL EQUATION	ORDER
$\frac{d y}{d x}=4 x$	1
$\frac{d^{3} y}{d t^{3}}-t \frac{d y}{d t}+t(y-1)=e^{t}$	3
$y^{\prime}+y=2 x^{2}$	1

Example 1.2. 1. $y y^{\prime \prime}+e^{y}=x^{2} \ln y^{\prime}$ is a second order ODE.
2. $f_{2}(x) y^{\prime \prime}+f_{1}(x) y^{\prime}+f_{0}(x) y=g(x), f_{2}(x) \neq 0$. This is a second order linear ODE in the function $y(x) . g(x)$ is called the inhomogeneous term; the left hand side of the equation is called the homogeneous part of the this linear ODE; $f_{2}(x) y^{\prime \prime}+f_{1}(x) y^{\prime}+f_{0}(x) y=0$ is called the associated homogeneous linear ODE of the linear ODE given above. A linear ODE with inhomogeous term 0 is called a homogeneous linear ODE.
3. The ODE in 1. is non-linear. The second ODE in Example 1.1 is linear with inhomogeneous term e^{t}.

Remark. $\sum_{i=1}^{n} a_{i} x_{i}=b$, where a_{i}, b are constants ("coefficients") is said to be a linear equation in the variables $x_{1}, \ldots, x_{n} . b$ is called the inhomogeneous term, and the equation is said to be homogeneous when $b=0$. For differential equations, functions of x play the roles of "coefficients" a_{1}, \ldots, a_{n}, b, and $y^{(i)}, i=0,1, \ldots$ play the roles of "variables".

Definition 1.2. A function $y=y(x)$ is a solution of an ordinary differential equation on an open interval if the equation is satisfied identically on the interval when y and its derivatives are substituted into the equation.

Remark. The solution might not exist; it might not be unique.
Example 1.3. $y(x)=e^{2 x}$ is a solution to the ODE $y^{\prime \prime}-4 y^{\prime}+4 y=0 . y(x)=4 e^{2 x}$ is another solution.

Example 1.4. Find the solution of $\frac{d}{d x} y=4 x$, or equivalently, $y^{\prime}(x)=x$.
Solution. Integrate both sides: $y(x)=\int 4 x d x=2 x^{2}+C$, where C is an arbitrary constant.
Then, $y=2 x^{2}+C, \quad C \in \mathbb{R}$ is called general solution of $y^{\prime}(x)=4 x$.
Choose any C, e.g. $C=5$, we get a particular solution $y=2 x^{2}+5$.

For a first-order equation, the single arbitrary constant can be determined by specifying the value of the unknown function $y(x)$ at an arbitrary x-value x_{0}, say $y\left(x_{0}\right)=y_{0}$. This is called an initial condition, and the problem of solving a first-order equation subject to an initial condition is called a first-order initial-value problem.

Example 1.5.

$$
\left\{\begin{array}{l}
y^{\prime}(x)=4 x \\
y(5)=20
\end{array}\right.
$$

is an initial value problem.
General solution $y=2 x^{2}+C$ should satisfy the initial condition $y(5)=20$, i.e.

$$
20=2(5)^{2}+C \quad \Rightarrow \quad C=-30 .
$$

So, the unique solution to the initial value problem is $y=2 x^{2}-30$.

Solving a general ODE is typically very difficult, and there is no general algorithm for doing so. We shall discuss only some particularly simple cases.

2 Separation of Variables

Definition 2.1 (Separable Equation).

$$
\frac{d y}{d x}=\frac{g(x)}{h(y)}
$$

is called a separable equation.

For those separable differential equations, we can formally rewrite them in the form ("separation of variables"-each side involve one single variable)
"h(y)dy=g(x)dx"

Integrate both sides with respect to x and y respectively, we have

$$
\begin{equation*}
\int h(y) d y=\int g(x) d x \tag{2}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
H(y)=G(x)+C \tag{3}
\end{equation*}
$$

where $H(x), G(x)$ denote antiderivatives of $h(x)$ and $g(x)$ respectively, and C denotes a constant.

Example 2.1. Solve

$$
\text { (1) } \frac{d y}{d x}=\frac{2 x}{y^{2}} \quad \text { (2) } \quad\left\{\begin{array}{l}
\frac{d y}{d x}=\frac{2 x}{y^{2}} \\
y(0)=1
\end{array}\right.
$$

Solution. (1) Separating variables and integrating yields

$$
\begin{aligned}
y^{2} d y & =2 x d x \\
\int y^{2} d y & =\int 2 x d x
\end{aligned}
$$

or

$$
\frac{1}{3} y^{3}=x^{2}+C
$$

or, equivalently

$$
y=\sqrt[3]{3\left(x^{2}+C\right)}
$$

(2) The initial condition $y(0)=1$ requires that $y=1$ when $x=0$. Substituting these values into our solution yields $C=\frac{1}{3}$ (verify). Thus, a solution to the initial-value problem is

$$
y=\sqrt[3]{3 x^{2}+1}
$$

Example 2.2. Solve

$$
\frac{d y}{d x}=-4 x y^{3}
$$

Solution. (1) For $y \neq 0$, we can write the differential equation as

$$
\frac{1}{y^{3}} \frac{d y}{d x}=-4 x
$$

Separating variables and integrating yields

$$
\begin{aligned}
\frac{1}{y^{3}} d y & =-4 x d x \\
\int \frac{1}{y^{3}} d y & =\int-4 x d x
\end{aligned}
$$

or

$$
-\frac{1}{2 y^{2}}=-2 x^{2}+C
$$

or, equivalently

$$
y^{2}=\frac{1}{4 x^{2}-2 C}
$$

(2) Constant function $y=0$ also satisfies the differential equation, since

$$
0^{\prime}=-4 x \cdot(0)^{3}
$$

Therefore, the solution is $y^{2}=\frac{1}{4 x^{2}-2 C}$ or $y=0$.

Remark. For $y^{\prime}=g(x) h(y)$, divide both sides by $h(y) \Rightarrow \frac{d y}{h(y)}=g(x) d x$.
Do not miss the particular constant solution $y=a$ that makes $h(a)=0$.

Example 2.3. Solve $y^{\prime}=3 x^{2} y$.

Solution. (1) For $y \neq 0$, it can be written as

$$
\frac{d y}{y}=3 x^{2} d x
$$

so

$$
\begin{aligned}
\int \frac{d y}{y} & =\int 3 x^{2} d x \\
\ln |y| & =x^{3}+C_{1} \\
|y| & =e^{x^{3}} \cdot e^{C_{1}}, \quad C_{1} \in \mathbb{R} \\
y & = \pm e^{x^{3}} \cdot e^{C_{1}}, \quad C_{1} \in \mathbb{R} \\
y & =C_{2} e^{x^{3}}, \quad C_{2} \neq 0
\end{aligned}
$$

(2) Check: $y=0$ is also a solution.

Therefore, the general solution is

$$
y=C e^{x^{3}}, \quad C \in \mathbb{R}
$$

Example 2.4. Find a curve $y=y(x)$ on the $x-y$ plane that passes through $(0,2)$ and whose tangent line at a point (x, y) has slope $2 x^{3} / y^{2}$.

Solution. Since the slope of the tangent line is $d y / d x$, we have

$$
\frac{d y}{d x}=\frac{2 x^{3}}{y^{2}}
$$

which is separable and can be written as

$$
y^{2} d y=2 x^{3} d x
$$

so

$$
\int y^{2} d y=\int 2 x^{3} d x \quad \text { or } \frac{1}{3} y^{3}=\frac{1}{2} x^{4}+C
$$

It follows from the initial condition that $y=2$ if $x=0$. Substituting these values into the last equation yields $C=\frac{8}{3}$ (verify), so the equation of the desired curve is

$$
\frac{1}{3} y^{3}=\frac{1}{2} x^{4}+\frac{8}{3} .
$$

3 First-Order Linear Differential Equations

Recall: A 1st order linear ODE has the general form $a(x) y^{\prime}+b(x) y=c(x)$, where $a(x) \neq 0$. We can always divide the whole equation by $a(x)$ and consider equivalently the equation $y^{\prime}+\frac{b}{a} y=\frac{c}{a}$ wherever $a(x) \neq 0$. So we may restrict to equations of the form

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=q(x) \tag{4}
\end{equation*}
$$

(1) If $q(x)=0$ (homogeneous case),

$$
\frac{d y}{d x}+p(x) y=0, \quad \text { separable equation! }
$$

(2) For general $q(x)$, use integrating factors!

Idea: multiply the differential equation by a factor $\mu(x)$, then

$$
\mu(x) \frac{d y}{d x}+\mu(x) p(x) y=\mu(x) q(x)
$$

Hope we can rewrite LHS in the form of $\frac{d}{d x}(\cdots)$, then the differential equation can be written as

$$
\frac{d}{d x}(\cdots)=\mu(x) q(x) \quad \text { separable equation! }
$$

Check: $\mu(x)=e^{\int p(x) d x}$ works!

$$
\begin{array}{rlr}
\frac{d}{d x}(\mu y) & =\mu \frac{d y}{d x}+\frac{d \mu}{d x} y & \text { (product rule) } \\
& =\mu \frac{d y}{d x}+\mu p(x) y & \text { (chain rule) } \\
& =\mu q & \text { (apply equation) }
\end{array}
$$

So, $\mu y=\int \mu q d x$ and

$$
y=\frac{1}{\mu} \int \mu q d x
$$

Remark. There are infinitely many choices for $\mu(x)=e^{\int p(x) d x}$ (it involves an indefinite integral). Just pick any one!

The Method of Integrating Factors

Step 1. Calculate the integrating factor

$$
\mu=e^{\int p(x) d x} .
$$

Since any μ will suffice, we can take the constant of integration to be zero in this step.
Step 2. Multiply both sides of (4) by μ and express the result as

$$
\frac{d}{d x}(\mu y)=\mu q(x) .
$$

Step 3. Integrate both sides of the equation obtained in Step 2 and then solve for y. Be sure to include a constant of integration in this step.

Example 3.1. Solve the differential equation

$$
\frac{d y}{d x}-y=e^{3 x}
$$

Solution. We have a first-order linear equation with $p(x)=-1$ and $q(x)=e^{3 x}$.

$$
\mu=e^{\int p(x) d x}=e^{\int(-1) d x}=e^{-x} .
$$

Next we multiply both sides of the given equation by μ to obtain

$$
e^{-x} \frac{d y}{d x}-e^{-x} y=e^{-x} e^{3 x}
$$

which we can rewrite as

$$
\frac{d}{d x}\left[e^{-x} y\right]=e^{2 x}
$$

So

$$
e^{-x} y=\frac{1}{2} e^{2 x}+C
$$

Finally, solving for y yields the general solution

$$
y=\frac{1}{2} e^{3 x}+C e^{x} .
$$

Exercise 3.1. Solve $y^{\prime}+2 x y=4 x$.
Ans: $y=2+C e^{-x^{2}}$.

Example 3.2. Solve the initial-value problem

$$
x \frac{d y}{d x}-y=x, \quad y(1)=2 .
$$

Solution. By dividing both sides by x, we have

$$
\begin{equation*}
\frac{d y}{d x}-\frac{1}{x} y=1, \quad(x \neq 0) \tag{5}
\end{equation*}
$$

By the initial condition at $x=1$, we restrict domain to $x>0$. Then,

$$
\mu=e^{\int p(x) d x}=e^{-\int \frac{1}{x} d x}=e^{-\ln |x|}=e^{-\ln x}=\frac{1}{x} .
$$

Multiplying both sides of Equation (5) by this integrating factor yields

$$
\frac{1}{x} \frac{d y}{d x}-\frac{1}{x^{2}} y=\frac{1}{x}
$$

or

$$
\frac{d}{d x}\left[\frac{1}{x} y\right]=\frac{1}{x}
$$

Therefore, on the interval $(0,+\infty)$,

$$
\frac{1}{x} y=\int \frac{1}{x} d x=\ln x+C
$$

from which it follows that

$$
\begin{equation*}
y=x \ln x+C x . \tag{6}
\end{equation*}
$$

By $y(1)=2$, we have $C=2$ (verify). So the solution of the initial-value problem is

$$
y=x \ln x+2 x, \quad x>0 .
$$

Exercise 3.2. Solve the initial-value problem

$$
x \frac{d y}{d x}-y=x, \quad y(-1)=2 .
$$

4 Modeling with ODE

Example 4.1 (Mixing Problem). At time $t=0$, a tank contains 4 lb of salt dissolved in 100 gal of water. Suppose that brine containing $2 \mathrm{lb} /$ gallon of salt is pumped into the tank at a rate of $5 \mathrm{gal} / \mathrm{min}$. At the same time, that the well-mixed solution is drained from the tank at the same rate. Find the amount of salt in the tank after 10 minutes.

Solution.

Let $\quad y(t)=$ amount of salt (lb) at time t.
$y(0)=4 \mathrm{lb}$.
Aim: $y(10)=$?
Key: How $y(t)$ changes? or, $\frac{d y}{d t}=? \mathrm{lb} / \mathrm{min}$.
We always have

$$
\frac{d y}{d t}=\text { rate in }- \text { rate out. }
$$

where rate in is the rate at which salt enters the tank and rate out is the rate at which salt leaves the tank.

By the formula: mass $=$ volume \times concentration, we have

$$
\begin{aligned}
\text { rate in } & =(2 \mathrm{lb} / \mathrm{gal}) \cdot(5 \mathrm{gal} / \mathrm{min})=10 \mathrm{lb} / \mathrm{min} \\
\text { rate out } & =\left(\frac{y(t)}{100} \mathrm{lb} / \mathrm{gal}\right) \cdot(5 \mathrm{gal} / \mathrm{min})=\frac{y(t)}{20} \mathrm{lb} / \mathrm{min}
\end{aligned}
$$

Therefore, we have an initial first order linear ordinary differential equation

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=10-\frac{y}{20} \quad \text { or } \quad \frac{d y}{d t}+\frac{y}{20}=10 \\
y(0)=4
\end{array}\right.
$$

The integrating factor for the differential equation is

$$
\mu=e^{\int(1 / 20) d t}=e^{t / 20}
$$

If we multiply the differential equation through by μ, then we obtain

$$
\begin{gathered}
\frac{d}{d t}\left(e^{t / 20} y\right)=10 e^{t / 20} \\
e^{t / 20} y=\int 10 e^{t / 20} d t=200 e^{t / 20}+C \\
y(t)=200+C e^{-t / 20}
\end{gathered}
$$

Substituting $t=0$ and $y=4$ into $y(t)$ and solving for C yields $C=-196$, so

$$
y(t)=200-196 e^{-t / 20}
$$

At time $t=10$, the amount of salt in the tank is

$$
y(10)=200-196 e^{-10 / 20} \approx 81.1 \mathrm{lb}
$$

Remark. After sufficiently long time, as $t \rightarrow+\infty, y(t) \rightarrow 200 \mathrm{lb}$.

Example 4.2. Modelling a pandemic: (SIR model)
https://www.youtube.com/watch?feature=share\&v=Qrp40ck3WpI\&app=desktop

Note: the number of infected grows exponentially in the initial stages (no intervention).
Coronavirus Cases Live Updates:
https://www.youtube.com/watch?feature=share\&v=Qrp40ck3WpI\&app=desktop

4.1 General structures of linear ODEs (optiopnal)

Fact: A general solution to a n-th order ODE typically involve n indeterminate constants.
Example 4.3. A falling ball: $y^{\prime \prime}=-g$ (gravitational constant). Initial conditions" initial position and velocity.

Proposition 1 (structure of homogeneous linear ODEs). If y_{1}, y_{2} are two solutions of a homogeneous ODE, then for any constants $C_{1}, C_{2}, y=C_{1} y_{1}+C_{2} y_{2}$ is also a solution.

Example 4.4. Find all solutions of the ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$.
Proposition 2 (structure of linear ODEs). A general solution y to a linear ODE has the form:

$$
y=y_{h}+y_{p},
$$

where y_{h} is the general solution to the linear ODE's associated homogeneous linear ODE; y_{p} is a "particular solution" to the ODE itself.

Example 4.5. Find all solutions of the ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=2$.

