
1. Compare Theorem (1), Theorem (2), Theorem (3):

Theorem (1).
Let B be a subset of R. The statements below hold:

(a) For any x ∈ B, x ≤ x.
(b) For any x, y ∈ B, if x ≤ y and y ≤ x then x = y.
(c) For any x, y, z ∈ B, if x ≤ y and y ≤ z then x ≤ z.

Theorem (2).
The statements below hold:

(a) Suppose x ∈ N. Then x is divisible by x.
(b) Let x, y ∈ N. Suppose y is divisible by x and x is divisible by y. Then x = y.
(c) Let x, y, z ∈ N. Suppose y is divisible by x and z is divisible by y. Then z is divisible

by x.
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Theorem (1).
Let B be a subset of R. The statements below hold:

(a) For any x ∈ B, x ≤ x.
(b) For any x, y ∈ B, if x ≤ y and y ≤ x then x = y.
(c) For any x, y, z ∈ B, if x ≤ y and y ≤ z then x ≤ z.

Theorem (3).
Let E be a set. The statements below hold:

(a) For any A ∈ P(E), A ⊂ A.
(b) For any A,B ∈ P(E), if A ⊂ B and B ⊂ A then A = B.
(c) For any A,B,C ∈ P(E), if A ⊂ B and B ⊂ C then A ⊂ C.

Theorem (1), Theorem (2), Theorem (3) suggest the presence of some common structure for
various mathematical objects. This mathematical structure is usually referred to as partial
ordering.
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2. Definition.
Let A be a set, and T be a relation in A with graph G.

(a) T is said to be reflexive if the statement (ρ) holds:
(ρ): For any x ∈ A, (x, x) ∈ G.

(b) T is said to be anti-symmetric if the statement (α) holds:
(α): For any x, y ∈ A, if ((x, y) ∈ G and (y, x) ∈ G) then x = y.

(c) T is said to be transitive if the statement (τ ) holds:
(τ ): For any x, y, z ∈ A, if ((x, y) ∈ G and (y, z) ∈ G) then (x, z) ∈ G.

Remark. The notions of reflexivity, anti-symmetry, and transitivity are ‘logically inde-
pendent’ of each other.

3. Definition.
Let A be a set, and T be a relation in A with graph G.
T is said to be a partially ordering in A if T is reflexive, anti-symmetric and transitive.
We may also say that A is partially ordered by T . We may refer to the ordered pair (A, T )
as a poset.
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4. Example (A). (Usual ordering for real numbers.)
Theorem (1), which is concerned with the usual ordering for real numbers, can be re-
formulated as:

Suppose B is a subset of R. Define G = {(x, y) | x, y ∈ B and x ≤ y}.
Then (B,B,G) is a partial ordering.
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Example (A). (Usual ordering for real numbers.)
Theorem (1), which is concerned with the usual ordering for real numbers, can be re-
formulated as:

Suppose B is a subset of R. Define G = {(x, y) | x, y ∈ B and x ≤ y}.
Then (B,B,G) is a partial ordering.

Remark. Example (A) is the primordial example of partial orderings. The notations
and terminologies for general partial orderings, soon to be introduced, are inspired by the
usual ordering for real numbers.

We may think of the usual orderings in N,Z,Q as ‘restrictions’ to these sets of the usual
ordering for real numbers.

5. Lemma (4).
Let A be a set. Suppose T is a partial ordering in A with graph G.
Then, for any subset C of A, (C,C,G ∩ C2) is a partial ordering in C.

Remarks on terminologies and notations.
We call the partial ordering (C,C,G ∩ C2) the restriction of T to C.
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6. Example (B). (Divisibility for natural numbers.)
Theorem (2), which is concerned with divisibility for natural numbers, can be re-formulated
as:

Define Gdiv = {(x, y) | x, y ∈ N and y is divisible by x}, and Tdiv = (N,N, Gdiv).
Then Tdiv is a partial ordering in N.

We call Tdiv the partial ordering in N defined by divisibility.

Remark. By Lemma (4), the restriction of Tdiv to any subset B of N defines a partial
ordering in B.
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Example (B). (Divisibility for natural numbers.)
Theorem (2), which is concerned with divisibility for natural numbers, can be re-formulated
as:

Define Gdiv = {(x, y) | x, y ∈ N and y is divisible by x}, and Tdiv = (N,N, Gdiv).
Then Tdiv is a partial ordering in N.

We call Tdiv the partial ordering in N defined by divisibility.

Remark. By Lemma (4), the restriction of Tdiv to any subset B of N defines a partial
ordering in B.

Further remark. Although the usual ordering for natural numbers and Tdiv are both
partial orderings in N, there is a subtle but important difference between them:
• Every pair of natural numbers can be ‘compared’ in terms of the usual ordering. This is

more formally formulated as:
For any x, y ∈ N, x ≤ y or y ≤ x.

• Not every pair of natural numbers can be ‘compared’ in terms of Tdiv. This is more
formally formulated as:

There exists some x, y ∈ N such that (x, y) /∈ Gdiv and (y, x) /∈ Gdiv.
For instance, (2, 3) /∈ Gdiv and (3, 2) /∈ Gdiv.
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7. Definition.
Let A be a set, and T be a partial ordering in A with graph G.

(a) Let x, y ∈ A. We say that x, y are T -comparable if (x, y) ∈ G or (y, x) ∈ G.
(b) We say that T is strongly connected (or connex) if the statement (κ) holds:

(κ): For any x, y ∈ A, (x, y) ∈ G or (y, x) ∈ G.

8. Definition.
Let A be a set, and T be a partial ordering in A with graph G.

(a) T is called a total ordering in A if T is strongly connected.
We may also say that A is totally ordered by T , and that the poset (A, T ) is totally
ordered.

(b) Let C be a subset of A.
The set C is called a chain with respect to T if the restriction of T to C is a total
ordering in C.
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9. Lemma (5).
Suppose A be a set, and T is a partial ordering in A. Then the statements below are logically
equivalent:

(a) T is strongly connected.
(b) T is a total ordering in A.
(c) A is a chain with respect to T .
Moreover, if T is a total ordering in A, then for any subset B of A, the restriction of T to
B is a total ordering in B.

9





11. Example (C). (Subset relation.)
Theorem (3), which is concerned with the subset relation within an arbitrarily given set,
can be re-formulated as:

Suppose E is a set. Define GE,subset = {(U, V ) | U, V ∈ P(E) and U ⊂ V }, and
TE,subset = (P(E),P(M), GE,subset).
Then TE,subset is a partial ordering in P(E).

We call TE,subset the partial ordering in P(E) defined by the subset relation.

When E contains two or more elements, TE,subset is not a total ordering.

By Lemma (4), the restriction of the partial ordering TE,subset to any subset of P(E) defines
a partial ordering on that subset of P(E).
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12. Conventions on notations for partial orderings.
We are going to introduce some conventions on notations for general partial orderings.
They are inspired by the notations for usual orderings for real numbers and those for subset
relations.

Let A be a set and T be a partial ordering in A with graph G.
Suppose we agree to write (x, y) ∈ G as x ≼

T
y.

We pronounce ‘x ≼
T
y’ as

‘x precedes or equals y under the partial ordering T ’.
(a) If T is the only partial ordering in A under consideration, we may drop the reference to

the symbols T,G and write:
• ‘x ≼ y’ in place of ‘ x ≼

T
y ;

• ‘A is partially ordered by ≼’ in place of A is partially ordered by T ;
• ‘(A,≼) is a poset’ in place of (A, T ) is a poset; et cetera.
Under the above conventions, the statements (ρ), (α), (τ ) that hold for the partial or-
dering T are re-formulated as:
(ρ): For any x ∈ A, x ≼ x.
(α): For any x, y ∈ A, if (x ≼ y and y ≼ x) then x = y.
(τ ): For any x, y, z ∈ A, if (x ≼ y and y ≼ z) then x ≼ z.
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(b) We also agree that the same symbol ≼ will be used for the restriction of T to any subset
of A.

(c) We may write ‘x ≼
T
y’ as ‘y ≽

T
x’. The latter is pronounced as

‘y succeeds or equals x under the partial ordering T ’

(d) We may write x ≺
T
y, or equivalently, y ≻

T
x, exactly when (x, y) ∈ G and x ̸= y.

We pronounce ‘x ≺
T
y’ as

‘x precedes y under the partial ordering T ’.
We pronounce ‘y ≻

T
x’ as

‘y succeeds x under the partial ordering T ’.

Warning. Care must be taken because of the visual resemblance between the symbol ≤ and
the symbol ≼.
When we are using the symbol ‘≼’ for formulating statements concerned with a general
partial ordering T in an arbitrary set A, we have to deliberately remind ourselves that the
statement (κ) may fail to hold:

(κ): For any x, y ∈ A, x ≼ y or y ≼ x.
In fact (κ) holds exactly when the partial ordering T is a total ordering in A.
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13. Lemma (6).
Let A be a set, and T be a partial ordering in A with graph G. Write u ≼ v exactly when
(u, v) ∈ G.

(a) Let x, y ∈ A. The statements below are logically equivalent:

i. x, y are T -comparable. (x ≼ y or y ≼ x.)
ii. Exactly one of ‘x ≺ y’, ‘x = y’, ‘x ≻ y’ is true.

(b) T is strongly connected iff the statement (τχ) holds:
(τχ): For any x, y ∈ A, exactly one of ‘x ≺ y’, ‘x = y’, ‘x ≻ y’ is true.

Remark. When T is indeed a total ordering in A, the statement (τχ) is known as the
Law of Trichotomy in the poset (A, T ).
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14. Example (D). (Lexicographical ordering in N2.)
With the usual ordering in N, we are going to construct a total ordering in N2, which is
inspired by how words in a dictionary are arranged according to alphabetical order.

Define J =

{
((s, t), (u, v))

∣∣∣∣∣ s, t, u, v ∈ N, and
[s < u or (s = u and t ≤ v)]

}
, and T = (N2,N2, J). Note

that J ⊂ (N2)2.
With a straightforward calculation, we can verify that T is a total ordering in N2.

The total ordering T is called the lexicographical ordering in N2.

For any s, t, u, v ∈ N, we write (s, t) ≤lex (u, v) exactly when ((s, t), (u, v)) ∈ J .
Then by definition, (s, t) ≤lex (u, v) iff [s < u or (s = u and t ≤ v)].

Illustrations:
• (1, 3) <lex (2, 0). (Reason: 1 < 2.)
• (2, 3) <lex (2, 4). (Reason: 2 = 2 and 3 < 4.)
As a whole, T can be visualized as:
(0, 0) ≤lex (0, 1) ≤lex (0, 2) ≤lex · · · ≤lex (1, 0) ≤lex (1, 1) ≤lex · · · ≤lex (2, 0) ≤lex · · · ≤lex (3, 0) ≤lex · · · ≤lex (4, 0) ≤lex · · ·
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Remark. We can apply the same method to construct the lexicographical ordering ≤lex

in N3, given by (⋆3):
(⋆) For any r, s, t, u, v, w ∈ N, (r, s, t) ≤lex (u, v, w) iff [r < u or (r = u and s < v) or (r = u

and s = v and t ≤ w)].
We can ‘inductively’ construct the lexicographical ordering in Nk for each k ∈ N\{0}.

Further remark. The above constructions ultimately rely on the fact that the usual
ordering in N is a total ordering in N. No other aspect of the natural number system has
anything to do with this construction.

Imitating the above construction, We can construct the lexicographical ordering ≤lex in R2

from the usual ordering in R, which is given by (⋆):
(⋆) For any s, t, u, v ∈ R, (s, t) ≤lex (u, v) iff [s < u or (s = u and t ≤ v)].
The lexicographical ordering in N2 is the restriction of this total ordering in R2.
We can ‘inductively’ construct the lexicographical ordering in Rk for each k ∈ N\{0}.

Example (D) is an illustration of the idea in Theorem (7), which is concerned with general
partial orderings.
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15. Theorem (7).
Let A,B be sets. Suppose R is a partial ordering in A with graph G, and S is a partial
ordering in B with graph H .

Write s �
R
u exactly when (s, u) ∈ G. Write t �

S
v exactly when (t, v) ∈ H .

Define J =

{
((s, t), (u, v))

∣∣∣∣∣ s, u ∈ A, and t, v ∈ B, and
[s ≺

R
u or (s = u and t �

S
v)]

}
, and

T = (A×B,A×B, J).

Then T is a partial ordering in A×B.

Moreover, if R is a total ordering in A and S is a total ordering in B, then T is a total
ordering in A×B.

Remark on terminologies and notations. T is called the lexicographical or-
dering in A×B induced by R and S.

17



16. Definition.
Let A be a set, and T be a partial ordering in A with graph G. Write u � v exactly when
(u, v) ∈ G.
Let B be a subset of A.

Let λ ∈ B. We say λ is a
{

greatest
least

}
element of B with respect to T if, for any x ∈ B,{

x � λ

x � λ

}
.

Remark. A subset of A has at most one greatest/least element with respect to T . Hence
it makes sense to refer to such an element of A as ‘the’ greatest/least element with respect
to T , if it exists.

Here in this Handout we focus on the question of existence of greatest/least elements for
sets with respect to total orderings.

18



17. Example (A’). (Usual ordering for real numbers.)
The notion of greatest/least element for subsets of R with respect to the usual ordering for
real numbers reduces to that for ‘greatest/least element for subsets of R’, introduced in the
Handout Greatest/least element, upper/lower bound.

(a) According to the Well-ordering Principle for Integers, for any subset B of N, if B is
non-empty, then B has a least element (with respect to the usual ordering for natural
numbers).
A non-empty subset of N does not necessarily have any greatest element.

(b) Let a, b be real numbers. Supposed a < b.

least element greatest element
(a, b) nil nil
[a, b) a nil
(a, b] nil b

[a, b] a b

least element greatest element
(a,+∞) nil nil
[a,+∞) a nil
(−∞, b) nil nil
(−∞, b] nil b
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18. Definition.
Let A be a set, and T be a partial ordering in A. We say T is a well-order relation in
A if the statement (λ) holds:

(λ) For any subset B of A, if B is non-empty then B has a least element with respect
to T .

We also say that A is well-ordered by T , and that the poset (A, T ) is well-ordered.

Simple examples and non-examples of well-ordered sets.
(a) N is well-ordered by the usual ordering for natural numbers, according to Example (A’).

(This is just a re-formulation of the statement of the Well-ordering Principle for Integers.)
This is the primordial example of well-ordered sets.

(b) Every non-empty subset of Z which is bounded below in Z is well-ordered by the usual
ordering for integers.
Z is not well-ordered by the usual ordering for integers. (Why?)

(c) Q is not well-ordered by the usual ordering for rational numbers. (Why?)
(d) R is not well-ordered by the usual ordering for real numbers. (Why?)
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19. Lemma (8).
Let A be a set, and T is a partial ordering in A.
Suppose A is well-ordered by T . Then A is totally ordered by T .

Proof of Lemma (8).
Let A be a set, and T be a partial ordering in A with graph G. Suppose A is well-ordered
by T .

Pick any x, y ∈ A. Define B = {x, y}.

Then B is a non-empty subset of A.

By assumption, A is well-ordered by T .

Then B has a least element with respect to T , say, x.

Therefore, by definition, (x, y) ∈ G. Therefore (x, y) ∈ G or (y, x) ∈ G.

It follows that A is totally ordered by T .

21



Non-examples on well-order relations.
According to Lemma (8), there is no chance for a partial ordering which is not a total
ordering to be a well-order relation.

• Refer to Example (B).
The partial ordering Tdiv in N defined by divisibility is not a well-order relation, because
it is not a total ordering in N.

• Refer to Example (C).
When E is a set which has at least two elements, (P(E),P(E), GE,subset) is not a well-order
relation, because it is not a total ordering in P(E).

Reminder. The converse of Lemma (8) is false: a total ordering in a set is not necessarily
a well-order relation in that set.
(For instance, the usual ordering for real numbers is a total ordering in R but it is not a
well-order relation in R.)
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20. Lemma (9).
Let A be a set. Suppose T is a well-order relation in A with graph G.
Then, for any subset B of A, (B,B,G ∩B2) is a well-order relation in B.

21. Theorem (10).
Let A be a non-empty set. Suppose T is a well-order relation in A with graph G. Write
x � y iff (x, y) ∈ G.
Then the statements below hold:

(a) There exists some unique λ ∈ A such that for any x ∈ A\{λ}, λ ≺ x.
(b) For any x ∈ A, if x is not a greatest element of A with respect to T then there exists

some unique y ∈ A such that x ≺ y and (for any z ∈ A, if x � z � y then z = x or
z = y).

Remark. Theorem (10) brings out what is special about well-ordered posets.
• Statement (a) says that some unique element of A, namely the least element of A with

respect to T , will be the ‘starting element’ of A, in the sense that no element of A will
precede it with respect to T .

• Statement (b) says that it makes sense to talk about the (unique) ‘next element’ of A for
each element of A, in the sense that no third element of A will be between these two.
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This allows us to visualize the ‘ordering’ of all the elements of A, with respect to T , in the
‘chain of inequalities’

λ � λ′ � λ′′ � λ′′′ � · · ·
in which

λ is the least element of A with respect to T ,
λ′ is the least element of A\{λ} with respect to T ,
λ′′ is the least element of A\{λ, λ′} with respect to T ,
λ′′′ is the least element of A\{λ, λ′, λ′′} with respect to T , et cetera.

An illustration is how we may visualize the ‘ordering’ for all natural numbers with respect
to its usual ordering:

0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ · · ·

This cannot be done for the usual ordering for integers because Z has no least element.
This cannot be done for the usual ordering for rational numbers because the notion of ‘next
rational’ number does not make sense: between any two distinct rational numbers there is
definitely a third rational number.

But we may ask:
• Is it possible to equip these sets with some other partial orderings which are well-

order relations?
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22. Example (D’). (Lexicographical ordering in N2 as a well-order relation in
N2.)
The lexicographical ordering in N2 is a well-order relation in N2 because the statement (†)
holds:
(†) For any subset B of N2, if B is non-empty, then B has a least element with respect to

the lexicographical ordering in N2.

Below is the idea for the argument for the statement (†). (The detail is left as an exercise.)

Suppose B is a non-empty subset of N2.

Then we may pick some element of B, say, the ordered pair of natural numbers, say, (u, v).

The lexicographical ordering in N2 allows us to visualize the ‘ordering’ for all the elements
of N2, up to and including (u, v), through such a ‘chain of inequalities’ below:

(0, 0) ≤lex (0, 1) ≤lex (0, 2) ≤lex · · · ≤lex (1, 0) ≤lex (1, 1) ≤lex · · · ≤lex (2, 0) ≤lex · · · ≤lex (u, 0) ≤lex (u, 1) ≤lex · · · ≤lex (u, v)
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24. Example (E). (Well-order relation in Z arising from the usual ordering for
natural numbers.)
Recall that that Z is not well-ordered by the usual ordering for integers.
How, we may define a well-order relation in Z with the help of the usual ordering for natural
numbers.

Define the function f : Z −→ N by f (x) =

{
2x if x is non-negative
− 2x− 1 if x is negative

.

f is an injective function from Z to N.
Let G = {(x, y) | x ∈ Z and y ∈ Z and f (x) ≤ f (y)}, and S = (Z,Z, G).
S is a well-order relation in Z.
So we visualize the ‘ordering’ for all integers with respect to the well-order relation S, through
the ‘chain of inequalities’ below:

0 �
S
−1 �

S
1 �

S
−2 �

S
2 �

S
−3 �

S
3 �

S
· · · �

S
n− 1 �

S
−n �

S
n �

S
· · ·

This is simply a direct translation, via f and S, of the chain of inequalities
0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ · · · ≤ 2n− 2 ≤ 2n− 1 ≤ 2n ≤ · · · .

Note that 0 ≺
S
−1 ≺

S
1 whereas −1 < 0 < 1. Hence S is certainly distinct from the usual

ordering for integers.
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25. Example (F). (Well-order relation in N2 which is not the same as the lexi-
cographical ordering.)
Recall that the lexicographical ordering in N2 is a well-order relation in N2. We now intro-
duce, via an injective function from N2 to N, another well-order relation in N2 which is not
the lexicographical ordering in N2.

Define the function f : N2 −→ N by f (x, y) = 2x3y for any x, y ∈ N.

f is an injective function from N2 to N. (You need Euclid’s Lemma to justify this claim.)

Let G = {((s, t), (u, v)) | s, t, u, v ∈ N and f (s, t) ≤ f (u, v)}, and S = (N2,N2, G).

S is a well-order relation in N2.

So we visualize the ‘ordering’ for all the elements of N2 with respect to the well-order relation
S, through the ‘chain of inequalities’ below:

(0, 0) �
S
(1, 0) �

S
(0, 1) �

S
(2, 0) �

S
(1, 1) �

S
(3, 0) �

S
(0, 2) �

S
(2, 1) �

S
(4, 0) �

S
(1, 2) �

S
(3, 1) �

S
(0, 3) �

S
· · ·

This is simply a direct translation, via f and S, of the chain of inequalities
1 ≤ 2 ≤ 3 ≤ 4 ≤ 6 ≤ 8 ≤ 9 ≤ 12 ≤ 16 ≤ 18 ≤ 24 ≤ 27 ≤ · · · .

29





Note that
(1, 0) ≺

S
(0, 1) ≺

S
(2, 0)

whereas
(1, 0) <lex (2, 0) <lex (0, 1).

Hence S is certainly distinct from the lexicographical ordering for N2.

Remark. Replacing f by another injective function from N2 to N, we will obtain another
well-order relation in N2 from such a construction.
(For instance, what do you obtain with the injective function g : N2 −→ N given by
g(x, y) = 2x5y for any x, y ∈ N? Or how about the injective function h : N2 −→ N given
by h(x, y) = 3x5y for any x, y ∈ N?)

Example (E), Example (F) are illustrations of the idea in Theorem (12), which is concerned
with general partial orderings.
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26. Theorem (12).
Let A,B be sets, and f : A −→ B be an injective function.

Suppose T is a partial ordering in B with graph H . Write u ≼
T
v exactly when (u, v) ∈ H .

Define G = {(x, y) | x, y ∈ A and f (x) ≼
T
f (y)}, and S = (A,A,G).

Then S is a partial ordering in A with graph G.

If T is a total ordering in B then S is a total ordering in A.

If T is a well-order relation in B then S is a well-order relation in A.

Remark on terminology and notation. In the context of Theorem (12), the
partial ordering S defined by the injective function f and the partial ordering T is called
the partial ordering in A defined by the pullback of T by f . It is denoted by
f ∗T , and its graph is denoted by f ∗H .
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(c) We take the statement (♯) for granted:
(♯) For any r ∈ Q\{0}, there exist some unique pr, qr ∈ Z such that gcd(pr, qr) = 1 and

qr > 0 and r =
pr
qr

.

(Justify the statement (♯) as an exercise.)

Define the function f : Q −→ Z2 by

f (r) =

{
(pr, qr) if r ∈ Q\{0}
(0, 1) if r = 0.

f is injective.

(d) According to Theorem (12), the partial ordering f ∗T in Q defined by the pullback of T
by f is a well-order relation in Q.
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28. Well-ordering Principle, as a fundamental assumption in mathematics.
Example (E) and Example (G) tell us:
• Despite the fact that Z,Q themselves are not well-ordered by the usual ordering for real

numbers, it is still possible to equip them with various well-order relations.
We may ask: Can we do the same thing for R?
If R can be equipped with a well-order relation, say, T , then the lexicographical ordering in
R2 induced by T will be a well-order relation in R2, and will further provide a well-order
relation for C.

We may further ask: Is it possible to equip any arbitrary set equipped with a well-order
relation?
It turns out that the answers to these questions are not quite trivial.

Well-ordering Principle.
Suppose A is a set. Then there exists some partial ordering T in A such that A is well-
ordered by T .

Remark. We do not ‘prove’ the Well-ordering Principle. It is taken as a fundamental
assumption in mathematics. (Of course, it is legitimate to choose between ‘believing’ the
Well-ordering Principle and ‘not believing’ it.)
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