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1 Two-person zero sum games

1.1 Game matrices

In a two-person zero sum game, two players, player I and player II, make
their moves simultaneously. Then the payoffs to the players depend on the
strategies used by the players. In this chapter, we study only zero sum
games which means the sum of the payoffs to the players is always zero. We
will also assume that the game has perfect information which means all
players know how the outcomes depend on the strategies the players use.

Definition 1.1.1 (Strategic form of a two-person zero sum game). The
strategic form of a two-person zero sum game is given by a triple (X, Y, π)
where

1. X is the set of strategies of player I.

2. Y is the set of strategies of player II.

3. π : X × Y → R is the payoff function of player I.

For (x, y) ∈ X×Y , the value π(x, y) is the payoff to player I when player
I uses strategy x and player II uses strategy y. Note that the payoff to
player II is equal to −π(x, y) since the game is a zero sum game. The game
has perfect information means that the function π is known to both players.
We will always assume that the sets X and Y are finite. In this case we may
assume X = {1, 2, · · · ,m} and Y = {1, 2, · · · , n}. Then the payoff function
can be represented by an m×n matrix which is called the game matrix and
we will denote it by A = [aij]. A two-person zero sum game is completely
determined by its game matrix. When player I uses the i-th strategy and
player II uses the j-th strategy, then the payoff to player I is the entry aij
of A. The payoff to player II is then −aij. If a two-person zero sum game
is represented by a game matrix, we will call player I the row player and
player II the column player.

Given a game matrix A, we would like to know what the optimal strategies
for the players are and what the payoffs to the players will be if both of them
use their optimal strategies. The answer to this question is simple if A has a
saddle point.

Definition 1.1.2 (Saddle point). We say that an entry akl is a saddle point
of an m× n matrix A if
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1. akl = min
j=1,2,··· ,n

{akj}

2. akl = max
i=1,2,··· ,m

{ail}

The first condition means that when the row player uses the k-th strategy,
then the payoff to the row player is not less than akl no matter how the column
player plays. The second condition means that when the column player uses
the l-th strategy, then the payoff to the row player is not larger than akl no
matter how the row player plays. Consequently we have

Theorem 1.1.3. If A has a saddle point akl, then the row player may guar-
antee that his payoff is not less than akl by using the k-th strategy and the
column player may guarantee that the payoff to the row player is not larger
than akl by using the l-th strategy.

Suppose A is a matrix which has a saddle point akl. The above theo-
rem implies that the corresponding row and column constitute the optimal
strategies for the players. To find the saddle points of a matrix, first write
down the row minima of the rows and the column maxima of the columns.
Then find the maximum of row minima which is called the maximin, and
the minimum of the column maxima which is called the minimax. If the
maximin is equal to the minimax, then the entry in the corresponding row
and column is a saddle point. If the maximin and minimax are different,
then the matrix has no saddle point.

Example 1.1.4.

min
1 2 0
3 5 2
0 −4 −3
−2 4 1


0
2
−4
−2

max 3 5 2

Both the maximin and minimax are 2. Therefore the entry a23 = 2 is a
saddle point. �

Example 1.1.5.
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min 2 −1 3 1
−4 2 0 3
0 1 −2 4

 −1
−4
−2

max 2 2 3 4

The maximin is −1 while the minimax is 2 which are not equal. Therefore
the matrix has no saddle point. �

Saddle point of a matrix may not be unique. However the values of saddle
points are always the same.

Theorem 1.1.6. The values of the saddle points of a matrix are the same.
That is to say, if akl and apq are saddle points of a matrix, then akl = apq.
Furthermore, we have apq = apl = akq = akl.

Proof. We have

akl ≤ akq (since akl ≤ akj for any j)
≤ apq (since aiq ≤ apq for any i)
≤ apl (since apq ≤ apj for any j)
≤ akl (since ail ≤ akl for any i)

Therefore
akl = akq = apq = apl

We have seen that if A has a saddle point, then the two players have
optimal strategies by using one of their strategies constantly (Theorem 1.1.3).
If A has no saddle point, it is expected that the optimal ways for the players
to play the game are not using one of the strategies constantly. Take the
rock-paper-scissors game as an example.

Example 1.1.7 (Rock-paper-scissors). The rock-paper-scissors game has
the game matrix

R P S
R
P
S

 0 −1 1
1 0 −1
−1 1 0


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Here we use the order rock(R), paper(P), scissors(S) to write down the game
matrix. �

Everybody knows that the optimal strategy of playing the rock-paper-
scissors game is not using any one of the gestures constantly. When one
of the strategies of a player is used constantly, we say that it is a pure
strategy. For games without saddle point like rock-paper-scissors game,
mixed strategies instead of pure strategies should be used.

Definition 1.1.8 (Mixed strategy). A mixed strategy is a row vector x
= (x1, x2, · · · , xm) ∈ Rm such that

1. xi ≥ 0 for any i = 1, 2, · · · ,m

2.
m∑
i=1

xi = 1

In other words, a vector is a mixed strategy if it is a probability vector.
We will denote the set of probability m vectors by Pm.

When a mixed strategy (x1, x2, · · · , xm) is used, the player uses his i-
th strategy with a probability of xi for i = 1, 2, · · · ,m. Mixed strategies
are generalization of pure strategies. If one of the coordinates of a mixed
strategy is 1 and all other coordinates are 0, then it is a pure strategy. So
a pure strategy is also a mixed strategy. Suppose the row player and the
column player use mixed strategies x ∈ Pm and y ∈ Pn respectively. Then
the outcome of the game is not fixed because the payoffs to the players will
then be random variables. We denote by π(x,y) the expected payoff to
the row player when the row player uses mixed strategy x and the column
player uses mixed strategy y. We have the following simple formula for the
expected payoff π(x,y) to the row player.

Theorem 1.1.9. In a two-person zero sum game with m × n game matrix
A, suppose the row player uses mixed strategies x and the column player uses
mixed strategies y independently. Then the expected payoff to the row player
is

π(x,y) = xAyT

where yT is the transpose of y.
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Proof. The expected payoff to the row player is

E(payoff to the row player)
=

∑
1 ≤ i ≤ m
1 ≤ j ≤ n

aijP (I uses i-th strategy and II uses j-th strategy)

=
∑

1 ≤ i ≤ m
1 ≤ j ≤ n

aijP (I uses i-th strategy)P (II uses j-th strategy)

=
∑

1 ≤ i ≤ m
1 ≤ j ≤ n

aijxiyj

= xAyT

Let A be an m× n game matrix. For x ∈ Pm, the vector

xA ∈ Rn

has the following interpretation. The j-th coordinate, j = 1, 2, · · · , n, of the
vector is the expected payoff to the row player if the row player uses mixed
strategy x and the column player uses the j-th strategy constantly. In this
case a rational column player would use the l-th strategy, 1 ≤ l ≤ n, such
that the l-th coordinate of the vector xA is the least coordinate among all
coordinates of xA. (Note that the column player wants the expected payoff
to the row player as small as possible since the game is a zero sum game.)

On the other hand, for y ∈ Pn, the i-th coordinate, i = 1, 2, · · · ,m, of
the column vector

AyT ∈ Rm

is the expected payoff to the row player if the row player uses his i-th strategy
constantly and the column player uses the mixed strategy y. In this case a
rational row player would use the k-th strategy, 1 ≤ k ≤ m, such that the
k-th coordinate of AyT is the largest coordinate among all coordinates of
AyT .

When a game matrix does not have a saddle point, both players do not
have optimal pure strategies. However there always exists optimal mixed
strategies for the players by the following minimax theorem due to von Neu-
mann.

Theorem 1.1.10 (Minimax theorem). Let A be an m × n matrix. Then
there exists real number ν ∈ R, mixed strategy for the row player p ∈ Rm,
and mixed strategy for the column player q ∈ Rn such that
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1. pAyT ≥ ν, for any y ∈ Pn

2. xAqT ≤ ν, for any x ∈ Pm

3. pAqT = ν

In the above theorem, the real number ν = ν(A) is called the value, or the
security level, of the game matrix A. The strategy p is called a maximin
strategy for the row player and the strategy q is called a minimax strategy
for the column player. The value ν of a matrix is unique. However maximin
strategy and minimax strategy are in general not unique.

The maximin strategy p and the minimax strategy q are the optimal
strategies for the row player and the column player respectively. It is because
the row player may guarantee that his payoff is at least ν no matter how the
column player plays by using the maximin strategy p. This is also the reason
why the value ν is called the security level. Similarly, the column player may
guarantee that the payoff to the row player is at most ν, and thus his payoff
is at least −ν, no matter how the row player plays by using the minimax
strategy q. We will prove the minimax theorem in Section 2.4.

1.2 2× 2 games

In this section, we study 2 × 2 game matrices closely and see how one can
solve them, that means finding the maximin strategies for the row player,
minimax strategies for the column player and the values of the game. First
we look at a simple example.

Example 1.2.1 (Modified rock-paper-scissors). The rules of the modified
rock-paper-scissors are the same as the ordinary rock-paper-scissors except
that the row player can only show the gesture rock(R) or paper(P) but not
scissors while the column player can only show the gesture scissors(S) or
rock(R) but not paper. The game matrix of the game is

S R
R
P

(
1 0
−1 1

)
It is easy to see that the game matrix does not have a saddle point. Thus
there is no pure maximin or minimax strategy. To solve the game, suppose
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the row player uses mixed strategy x = (x, 1− x). Consider

xA = (x, 1− x)

(
1 0
−1 1

)
= (x− (1− x), 1− x) = (2x− 1, 1− x)

This shows that when the row player uses mixed strategy x = (x, 1−x), then
his payoff is 2x− 1 if the column player uses his 1st strategy scissors(S) and
is 1− x if the column player uses his 2nd strategy rock(R). Now we solve the
equation 2x − 1 = 1 − x and get x = 2

3
. One may see that if 0 ≤ x < 2

3
,

then 2x− 1 < x− 1 and a rational column player would use his 1st strategy
scissors(S) and the payoff to the row player would be 2x − 1 < 1

3
. On the

other hand, if 2
3
< x ≤ 1, then 2x − 1 > 1 − x and a rational column

player would use his 2nd strategy rock(R) and the payoff to the row player
would be 1 − x < 1

3
. Now if x = 2

3
, that is if the row player uses the mixed

strategy (2
3
, 1
3
), then he may guarantee that his payoff is 1− x = 2x− 1 = 1

3

no matter how the column player plays. This is the largest payoff he may
guarantee and therefore the mixed strategy p = (2

3
, 1
3
) is the maximin strategy

for the row player. Similarly, suppose the column player uses mixed strategy
y = (y, 1− y). Consider

AyT =

(
1 0
−1 1

)(
y

1− y

)
=

(
y

−y + (1− y)

)(
y

1− 2y

)
If 0 ≤ y < 1

3
, then y < 1 − 2y and a rational row player would use his 2nd

strategy paper(P) and his payoff would be 1 − 2y > 1
3
. If 1

3
< y ≤ 1, then

y > 1− 2y and a rational row player would use his 1st strategy rock(R) and
his payoff would be y > 1

3
. If y = 1

3
, then the payoff to the row player is always

1
3

no matter how he plays. Therefore q = (1
3
, 2
3
) is the minimax strategy for

the column player and he may guarantee that the payoff to the row player is
1
3

no matter how the row player plays. Moreover the value of the game is
ν = 1

3
. We summarize the above discussion in the following statements.

1. The row player may use his maximin strategy p = (2
3
, 1
3
) to guarantee

that his payoff is ν = 1
3

no matter how the column player plays.

2. The column player may use his minimax strategy q = (1
3
, 2
3
) to guar-

antee that the payoff to the row player is ν = 1
3

no matter how the row
player plays. �

Now we give the complete solutions to 2× 2 games.
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Theorem 1.2.2. Let

A =

(
a b
c d

)
be a 2× 2 game matrix. Suppose A has no saddle point. Then

1. The value of the game is

ν =
ad− bc

a− b− c+ d

2. The maximin strategy for the row player is

p =

(
d− c

a− b− c+ d
,

a− b
a− b− c+ d

)
3. The minimax strategy for the column player is

q =

(
d− b

a− b− c+ d
,

a− c
a− b− c+ d

)
Proof. Suppose the row player uses mixed strategy x = (x, 1− x). Consider

xA = (x, 1−x)

(
a b
c d

)
= (ax+c(1−x), bx+d(1−x)) = ((a−c)x+c, (b−d)x+d)

Now the payoff to the row player that he can guarantee is

min{(a− c)x+ c, (b− d)x+ d}

Since A has no saddle point, we have a− c and b−d are of different sign and
the maximum of the above minimum is obtained when

(a− c)x+ c = (b− d)x+ d

⇒ x =
d− c

a− b− c+ d

Note that x and 1− x = a−b
a−b−c+d must be of the same sign because A has no

saddle point. We must have 0 < x < 1 and we conclude that the maximin
strategy for the row player is

p =

(
d− c

a− b− c+ d
,

a− b
a− b− c+ d

)
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Similarly suppose the column player uses mixed strategy y = (y, 1 − y).
Consider

AyT =

(
a b
c d

)(
y

1− y

)
=

(
aq + b(1− y)
cq + d(1− y)

)
=

(
(a− b)y + b
(c− d)y + d

)
The column player may guarantee that the payoff to the row player is at
most

max{(a− b)y + b, (c− d)y + d}

The above quantity attains it minimum when

(a− b)y + b = (c− d)y + d

⇒ y =
d− b

a− b− c+ d

and the minimax strategy for the column player is

q =

(
d− b

a− b− c+ d
,

a− c
a− b− c+ d

)
By calculating

pA =

(
ad− bc

a− b− c+ d
,

ad− bc
a− b− c+ d

)
and AqT =

(
ad−bc

a−b−c+d
ad−bc

a−b−c+d

)
we see that the maximum payoff that the row player may guarantee to him-
self and the minimum payoff to the row player that the column player may
guarantee are both ad−bc

a−b−c+d . In fact the minimax theorem (Theorem 1.1.10)
says that these two values must be equal. We conclude that the value of A
is ν = ad−bc

a−b−c+d .

Note that the above formulas work only when A has no saddle point. If
A has a saddle point, the vectors p and q obtained using the formulas may
not be probability vectors.

Example 1.2.3. Consider the modified rock-paper-scissors game (Example
1.2.1) with game matrix

A =

(
1 0
−1 1

)
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The game matrix has no saddle point. By Theorem 1.2.2, the value of the
game is

ν =
ad− bc

a− b− c+ d
=

1× 1− 0× (−1)

1− 0− (−1) + 1
=

1

3

the maximin strategy for the row player is

p =

(
d− c

a− b− c+ d
,

a− b
a− b− c+ d

)
=

(
1− (−1)

1− 0− (−1) + 1
,

1− 0

1− 0− (−1) + 1

)
=

(
2

3
,
1

3

)
and the minimax strategy for the column player is

q =

(
d− b

a− b− c+ d
,

a− c
a− b− c+ d

)
=

(
1− 0

1− 0− (−1) + 1
,

1− (−1)

1− 0− (−1) + 1

)
=

(
1

3
,
2

3

)
�

Example 1.2.4. In a game, each of the two players Andy and Bobby calls
out a number simultaneously. Andy may call out either 1 or −2 while Bobby
may call out either 1 or −3. Then Bobby pays p dollars to Andy where p
is the product of the two numbers (Andy pays Bobby −p dollars when p is
negative). The game matrix of the game is

A =

(
1 −3
−2 6

)
The value of the game is

ν =
1× 6− (−2)× (−3)

1− (−3)− (−2) + 6
= 0

the maximin strategy for Andy is

p =

(
6− (−2)

1− (−3)− (−2) + 6
,

1− (−3)

1− (−3)− (−2) + 6

)
=

(
2

3
,
1

3

)
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and the minimax strategy for Bobby is

q =

(
6− (−3)

1− (−3)− (−2) + 6
,

1− (−2)

1− (−3)− (−2) + 6

)
=

(
3

4
,
1

4

)
�

We say that a two-person zero sum game is fair if its value is zero. The
game in Example 1.2.4 is a fair game.

1.3 Games reducible to 2× 2 games

To solve an m × n game matrix for m,n > 2 without saddle point, we may
first remove the dominated rows or columns. A row dominates another if all
its entries are larger than or equal to the corresponding entries of the other.
Similarly, a column dominates another if all its entries are smaller than or
equal to the corresponding entries of the other.

Definition 1.3.1. Let A = [aij] be an m× n game matrix.

1. We say that the k-th row is dominated by the r-th row if akj ≤ arj for
any j = 1, 2, · · · , n.

2. We say that the l-th column is dominated the s-th column if ail ≥ ais
for any i = 1, 2, · · · ,m.

We say that a row (column) is a dominated row (column) if it is domi-
nated by another row (column).

If the k-th row of A is dominated by the r-th row, then for the row player,
playing the r-th strategy is at least as good as playing the k-th strategy.
Thus the k-th row can be ignored in finding the maximin strategy for the
row player. Similarly the column player may ignore a dominated column
when finding his minimax strategy.

Theorem 1.3.2. Let A be an m × n game matrix. Suppose A has a domi-
nated row or dominated column. Let A′ be the matrix obtained by deleting a
dominated row or dominated column from A. Then

1. The value of A′ is equal to the value of A.
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2. The players of A have maximin/minimax strategies which never use
dominated row/column.

More precisely, if the k-th row is a dominated row of A, A′ is the (m−1)×n
matrix obtained by deleting the k-th row from A, and p′ = (p1, · · · , pk−1, pk+1,
· · · , pm) ∈ Pm−1 is a maximin strategy for the row player of A′, then p =
(p1, · · · , pk−1, 0, pk+1, · · · , pm) ∈ Pm is a maximin strategy for the row player
of A. Similarly, if the l-th column is a dominated row of A, A′ is the
m × (n − 1) matrix obtained by deleting the l-th column from A, and q′ =
(q1, · · · , ql−1, ql+1 · · · , qn) ∈ Pn−1 is a minimax strategy of A′, then q =
(q1, · · · , ql−1, 0, ql+1, · · · , qn) ∈ Pn is a minimax strategy of A.

Proof. Suppose the k-th row of A is dominated by the r-th row and A′

is obtained by deleting the k-th row from A. Let ν ′ be the value of A′

and q ∈ Pn be a minimax strategy of A′. For any mixed strategy x =
(x1, · · · , xm) ∈ Pm, define x′ = (x′1, · · · , x′k−1, x′k+1, · · · , x′m) ∈ Pm−1 by

x′i =

{
xi if i 6= r

xk + xr if i = r

and we have
xAqT ≤ x′A′qT ≤ ν ′

Here the first inequality holds because the k-th is dominated by the r-th
row and the second inequality holds because q is a minimax strategy of A′.
Thus the value of A is less than or equal to ν ′. On the other hand, let
p′ = (p1, · · · , pk−1, pk+1, · · · , pm) ∈ Pm−1 be a maximin strategy of A′ and
let p = (p1, · · · , pk−1, 0, pk+1, · · · , pm) ∈ Pm. Then we have

pAyT = p′A′yT ≥ ν ′

for any y ∈ Pn. It follows that the value of A is ν ′ and p is a maximin
strategy of A. The proof of the second statement is similar.

The removal of dominated rows or columns does not change the value of a
game. The above theorem only says that there is at least one optimal strategy
with zero probability at the dominated rows and columns. There may be
other optimal strategies which have positive probability at the dominated
rows or columns. However any optimal strategy must have zero probability
at strictly dominated rows and columns. Here a row is strictly dominated
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by another row if all its entries are strictly smaller than the corresponding
entries of the other. Similarly a column is strictly dominated by another
column if all its entries are strictly larger than the corresponding entries of
the other.

Example 1.3.3. To solve the game matrix

A =

 3 −1 4
2 −3 1
−2 4 0


we may delete the second row since it is dominated by the first row and get
the reduced matrix

A′ =

(
3 −1 4
−2 4 0

)
Then we may delete the third column since is dominated by the first column.
Hence the matrix A is reduced to the 2× 2 matrix

A′′ =

(
3 −1
−2 4

)
The value of this 2 × 2 matrix is 0.7. The maximin and minimax strategies
are (0.6, 0.4) and (0.5, 0.5) respectively. Therefore the value of A is 0.7, a
maximin strategy for the row player is (0.6, 0, 0.4) and a minimax strategy for
the column player is (0.5, 0.5, 0). Note that we need to insert the zeros to the
dominated rows and columns when writing down the maximin and minimax
strategies for the players. �

1.4 2× n and m× 2 games

Let

A =

(
a11 a12 · · · a1n
a21 a22 · · · a2n

)
be a 2×n matrix. We are going to explain how to solve the game with game
matrix A if there is no dominated row or column. Suppose the row player
uses strategy x = (x, 1 − x) for 0 ≤ x ≤ 1. The payoff to the row player is
given by

xA = (x, 1− x)

(
a11 a12 · · · a1n
a21 a22 · · · a2n

)
= (a11x+ a21(1− x), a12x+ a22(1− x), · · · , a1nx+ a2n(1− x))
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Now we need to find the value of x so that the minimum

min
1≤j≤n

{a1jx+ a2j(1− x)}

of the coordinates of xA attains its maximum. We may use graphical method
to achieve this goal.

Step 1.
For each 1 ≤ j ≤ n, draw the graph of

v = a1jx+ a2j(1− x), for 0 ≤ x ≤ 1

The graph shows the payoff to the row player if the column player uses
the j-th strategy.

Step 2.
Draw the graph of

v = min
1≤j≤n

{a1jx+ a2j(1− x)}

This is called the lower envelope of the graph.

Step 3.
Suppose (p, ν) is a maximum point of the lower envelope. Then ν is
the value of the game and p = (p, 1− p) is a maximin strategy for the
row player.

Step 4.
The solutions for y ∈ Pn to the equation

AyT = ν1T

where 1 = (1, 1), give the minimax strategy for the column player.

Example 1.4.1. Solve the 2× 4 game matrix

A =

(
−1 0 4 6
5 3 2 −1

)
Solution.
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Step 1. Draw the graph of
C1 : v = −x+ 5(1− x)

C2 : v = 3(1− x)

C3 : v = 4x+ 2(1− x)

C4 : v = 6x− (1− x)

Step 2. Draw the lower envelope (blue polygonal curve).

Step 3. The maximum point of the lower envelope is the intersection
point of C2 and C4. By solving{

C2 : v = 3(1− x)

C4 : v = 6x− (1− x)

we obtain the maximum point (p, ν) = (0.4, 1.8) of the lower envelope.

Step 4. Find the minimax strategies for the column player by solving(
0 6
3 −1

)(
y2
y4

)
=

(
1.8
1.8

)
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and get y2 = 0.7 and y4 = 0.3.

Therefore the value of the game is ν = 1.8. The maximin strategy for the
row player is p = (0.4, 0.6) and the minimax strategy for the column player
is q = (0, 0.7, 0, 0.3). �

Example 1.4.2. Solve the 2× 5 game matrix

A =

(
1 3 0 −1 2
−1 −3 2 5 −2

)
Solution. The lower envelope is shown in the following figure.

By solving 
C1 : v = x− (1− x)

C3 : v = 2(1− x)

C4 : v = −x+ 5(1− x)
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we see that the maximum point of the lower envelope is (p, ν) = (0.75, 0.5).
Thus the maximin strategy for the row player is (0.75, 0.25) and the value of
the game is ν = 0.5. To find minimax strategies for the column player, we
solve  1 1 1

1 0 −1
−1 2 5

 y1
y3
y4

 =

 1
0.5
0.5


Note that we have added the equation y1+y3+y4 = 1 to exclude the solutions
which are not probability vectors. (Explain why we didn’t do it in Example
1.4.1.) Using row operation, we obtain the row echelon form 1 1 1 1

1 0 −1 0.5
−1 2 5 0.5

 −→
 1 0 −1 0.5

0 1 2 0.5
0 0 0 0


The non-negative solution to the system of equations is

(y1, y3, y4) = (0.5 + t, 0.5− 2t, t) for 0 ≤ t ≤ 0.25

Therefore the column player has minimax strategies

q = (0.5 + t, 0, 0.5− 2t, t, 0) for 0 ≤ t ≤ 0.25

In particular, (0.5, 0, 0.5, 0, 0) and (0.75, 0, 0, 0.25, 0) are minimax strategies
for the column player. �

Example 1.4.3. Solve the 2× 5 game matrix

A =

(
−3 −1 −2 2 1
1 −1 3 −2 0

)
Solution. The lower envelope is shown in the following figure.
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The maximum points of the lower envelope are points lying on the line seg-
ment joining (0.25,−1) and (0.5,−1). Thus the value of the game is ν = −1.
The maximin strategies for the row player are

p = (p, 1− p) for 0.25 ≤ p ≤ 0.5

and the minimax strategy for the column player is

q = (0, 1, 0, 0, 0)

�

Next we consider m × 2 games. There are two methods to solve such
games.

Method 1.
Let y = (y, 1 − y), 0 ≤ y ≤ 1, be the strategy for the column player.
Draw the upper envelope

v = max
1≤i≤m

{ai1y + ai2(1− y)}

Suppose the minimum point of the upper envelope is (q, ν). Then the
value of the game is ν and the minimax strategy for the column player
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is q = (q, 1− q). Moreover the maximum strategies for the row player
are the solutions for x ∈ Pm to the equation

xA = ν1 = (ν, ν)

Method 2.
Solve the game with 2×m game matrix −AT . Then

value of A = − value of −AT
maximin strategy of A = minimax strategy of −AT
minimax strategy of A = maximin strategy of −AT

Example 1.4.4. Solve the 4× 2 game matrix

A =


4 −2
3 0
−1 1
−3 4


Solution.

Method 1.
Let y = (y, 1 − y), 0 ≤ y ≤ 1, be the strategy of the column player.
The upper envelope is
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Solving {
R2 : v = 3(1− y)

R4 : v = −3y + 4(1− y)

the minimum point of the upper envelope is (q, ν) = (0.4, 1.2). Now
the row player would only use the 2nd and 4th strategy and we solve

(x2, x4)

(
3 0
−3 4

)
= (1.2, 1.2)

which gives (x2, x4) = (0, 7, 0.3). Therefore the value of the game is
ν = 1.2, the maximin strategy for the row player is p = (0, 0.7, 0, 0.3)
and the minimax strategy for the column player is q = (0.4, 0.6).

Method 2.
Consider

−AT =

(
−4 −3 1 3
2 0 −1 −4

)
Draw the lower envelope
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We see that the value of −AT is -1.2 and the maximin strategy of −AT
is (0.4, 0.6). Solving(

−3 3
0 −4

)(
x2
x4

)
=

(
−1.2
−1.2

)
We get x2 = 0.7 and x4 = 0.3. Thus the minimax strategy of −AT is
(0, 0.7, 0, 0.3). Therefore

value of A = − value of −AT = 1.2
maximin strategy of A = minimax strategy of −AT = (0, 0.7, 0, 0.3)
minimax strategy of A = maximin strategy of −AT = (0.4, 0.6)

�

Theorem 1.4.5 (Principle of indifference). Let A be an m×n game matrix.
Suppose ν is the value of A, p = (p1, · · · , pm) be a maximin strategy for the
row player and q = (q1, · · · , qn) be a minimax strategy for the column player.

For any k = 1, 2, · · · ,m, if pk > 0, then
n∑
j=1

akjqj = ν. In particular, when

the column player uses his minimax strategy q, then the payoff to the row
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player are indifferent among all his k-th strategies with pk > 0. Similarly,

for any l = 1, 2, · · · , n, if ql > 0, then
m∑
i=1

ailpi = ν. In particular, when the

row player uses his maximin strategy p, then the payoff to the row player are
indifferent among all the l-th strategies of the column player with ql > 0.

Proof. For each k = 1, 2, · · · ,m, we have

n∑
j=1

akjqj ≤ ν

since q is a minimax strategy for the column player. On the other hand,

ν = pAqT =
m∑
k=1

pk

(
n∑
j=1

akjqj

)
≤

m∑
k=1

pkν = ν

Thus we have

pk

n∑
j=1

akjqj = pkν

for any k = 1, 2, · · · ,m. Therefore

n∑
j=1

akjqj = ν

whenever pk > 0. The proof of the second statement is similar.

Exercise 1

1. Find the values of the following game matrices by finding their saddle
points

(a)

 5 1 −2 6
−1 0 1 −2
3 2 5 4


(b)


−4 5 −3 −3
0 1 3 −1
−3 −1 2 −5
2 −4 0 −2


2. Solve the following game matrix, that is, find the value of the game,

a maximin strategy for the row player and a minimax strategy for the
column.
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(a)

(
1 7
2 −2

)

(b)

(
3 −1
−2 4

)

(c)

(
3 2 4 0
−2 1 −4 5

)

(d)

(
1 0 4 2
0 2 −3 −2

)

(e)


5 −3
−3 5
2 −1
4 0


(f)

 5 −2 4
3 −3 1
0 3 2


(g)

 5 1 −2 6
−1 0 1 −2
3 2 5 4


3. Raymond holds a black 2 and a red 9. Calvin holds a red 3 and a black

8. Each of them chooses one of the cards from his hand and then two
players show the chosen cards simultaneously. If the chosen cards are
of the same colour, Raymond wins and Calvin wins if the cards are of
different colours. The loser pays the winner an amount equal to the
number on the winner’s card. Write down the game matrix, find the
value of the game and the optimal strategies of the players.

4. Alex and Becky point fingers to each other, with either one finger or
two fingers. If they match with one finger, Becky pays Alex 3 dollars.
If they match with two fingers, Becky pays Alex 11 dollars. If they
don’t match, Alex pays Becky 1 dollar.

(a) Find the optimal strategies for Alex and Becky.

(b) Suppose Alex pays Becky k dollars as a compensation before the
game. Find the value of k to make the game fair.

5. Player I and II choose integers i and j respectively where 1 ≤ i, j ≤ 7.
Player II pays Player I one dollar if |i − j| = 1. Otherwise there is no
payoff. Write down the game matrix of the game, find the value of the
game and the optimal strategies for the players.

6. Use the principle of indifference to solve the game with game matrix
1 −2 3 −4
0 1 −2 3
0 0 1 −2
0 0 0 1


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7. In the Mendelsohn game, two players choose an integer from 1 to 5
simultaneously. If the numbers are equal there is no payoff. The player
that chooses a number one larger than that chosen by his opponent
wins 1 dollar from its opponent. The player that chooses a number two
or more larger than his opponent loses 2 dollars to its opponent. Find
the game matrix and solve the game.

8. Aaron puts a chip in either his left hand or right hand. Ben guesses
where the chip is. If Ben guesses the left hand, he receives $2 from
Aaron if he is correct and pays $4 to Aaron if he is wrong. If Ben
guesses the right hand, he receives $1 from Aaron if he is correct and
pays $3 to Aaron if he is wrong.

(a) Write down the payoff matrix of Aaron. (Use order of strategies:
Left, Right.)

(b) Find the maximin strategy for Aaron, the minimax strategy for
Ben and the value of the game.

9. Let

A =

(
−3 1
c −2

)
where c is a real number.

(a) Find the range of values of c such that A has a saddle point.

(b) Suppose the zero sum game with game matrix A is a fair game.

(i) Find the value of c.

(ii) Find the maximin strategy for the row player and the minimax
strategy for the column player.

10. Prove that if A is a skewed symmetric matrix, that is, AT = −A, then
the value of A is zero.

11. Let 1 = (1, 1, · · · , 1). Prove the following statements.

(a) If A is a symmetric matrix, that is AT = A, and there exists
probability vector y ∈ Pn such that AyT = v1T where v ∈ R is a
real number, then v is the value of A.

(b) There exists a square matrix A, a probability vector y and a real
number v such that AyT = v1T but v is not the value of A.
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12. Let n be a positive integer and

D =


λ1

λ2
0

. . .

0 λn


be an n× n diagonal matrix where λ1 ≤ λ2 ≤ · · · ≤ λn.

(a) Suppose λ1 ≤ 0 and λn > 0. Find the value of the zero sum game
with game matrix D.

(b) Suppose λ1 > 0. Solve the zero sum game with game matrix D.

13. Let

A =


1 −1 0 0 0
−1 −1 1 0 0
0 1 1 −1 0
0 0 −1 −1 1
0 0 0 1 −1

 .

(a) Find a vector x = (1, x2, x3, x4, x5) ∈ R5 and a real number a such
that

AxT = (0, 0, 0, 0, a)T

(b) Find a vector y = (1, y2, y3, y4, y5) ∈ R5 and a real number b such
that

AyT = (1, 1, 1, 1, b)T

(c) Find the maximin strategy, the minimax strategy and the value
of A. (Hint: Find real numbers α, β ∈ R such that q = αx + βy
satisfies AqT = v1T for some v ∈ R.)

14. For positive integer k, define

Ak =

(
4k − 3 −(4k − 2)
−(4k − 1) 4k

)
.

(a) Solve Ak, that is, find the maximin strategy, minimax strategy
and value of Ak in terms of k.
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(b) Let r1, r2, · · · , rn > 0 be positive real numbers. Using the principle
of indifference, or otherwise, find, in terms of r1, r2, · · · , rn, the
value of

D =


1
r1

0 0 · · · 0

0 1
r2

0 · · · 0

0 0 1
r3
· · · 0

...
...

...
. . .

...
0 0 0 · · · 1

rn

 .

(c) Find, with proof, the value of the matrix

A =


A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · A25

 .



2 Linear programming and maximin theorem

2.1 Linear programming

In this chapter we study two-person zero sum game with m×n game matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


Suppose the row player uses strategy x = (x1, · · · , xm) ∈ Pm. Then the
column player would use his j-th strategy such that

a1jp1 + a2jp2 + · · ·+ amjpm

is minimum among j = 1, 2, · · · , n. Thus the payoff to the row player that
he can guarantee is

min
j=1,2,··· ,n

{a1jx1 + a2jx2 + · · ·+ amjxm}

Hence if the above expression attains its maximum at x = p ∈ Pm, then p
is a maximin strategy for the row player. Moreover, the value of the game is

ν = max
x∈Pm

min
j=1,2,··· ,n

{a1jx1 + a2jx2 + · · ·+ amjxm}

By introducing a new variable v, we can restate the maximin problem, that
is finding a maximin strategy, as the following linear programming problem

max v
subject to a11p1 + a21p2 + · · ·+ am1pm ≥ v

a12p1 + a22p2 + · · ·+ am2pm ≥ v
...

a1np1 + a2np2 + · · ·+ amnpm ≥ v
p1 + p2 + · · ·+ pm = 1
p1, p2, · · · , pm ≥ 0
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Similarly, to find a minimax strategy for the column player, we need to solve
the following minimax problem

min v
subject to a11q1 + a12q2 + · · ·+ a1nqn ≤ v

a21q1 + a22q2 + · · ·+ a2nqn ≤ v
...

am1q1 + am2q2 + · · ·+ amnqn ≤ v
q1 + q2 + · · ·+ qn = 1
q1, q2, · · · , qn ≥ 0

To solve the maximin and minimax problems, first we transform them to a
pair of primal and dual problems.

Definition 2.1.1 (Primal and dual problems). A linear programming prob-
lem in the following form is called a primal problem.

max f(y1, · · · , yn) =
n∑
j=1

cjyj + d

subject to
n∑
j=1

aijyj ≤ bi, i = 1, 2, · · · ,m

y1, y2, · · · , yn ≥ 0

The dual problem associated to the above primal problem is

min g(x1, · · · , xm) =
m∑
i=1

bixi + d

subject to
m∑
i=1

aijxi ≥ cj, j = 1, 2, · · · , n

x1, x2, · · · , xm ≥ 0

Here x1, · · · , xm, y1, · · · , yn are variables, and aij, bi, cj, d, i = 1, 2, · · · ,m,
j = 1, 2, · · · , n, are constants. The linear functions f and g are called ob-
jective functions. The primal problem and the dual problem can be written
in the following matrix forms

Primal problem max f(y) = cyT + d
subject to AyT ≤ bT

y ≥ 0
Dual problem min g(x) = xbT + d

subject to xA ≥ c
x ≥ 0
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Here x ∈ Rm, y ∈ Rn are variable vectors, A is an m × n constant matrix,
b ∈ Rm, c ∈ Rn are constant vectors and d ∈ R is a real constant. The
inequality u ≤ v for vectors u,v means each of the coordinates of v − u is
non-negative.

For primal and dual problems, we always have the constraints x,y ≥ 0.
In other words, all variables are non-negative. From now on, we will not
write down the constraints x,y ≥ 0 for primal and dual problems and it is
understood that all variables are non-negative.

Definition 2.1.2. Suppose we have a pair of primal and dual problems.

1. We say that a vector x ∈ Rm in the dual problem, (or y ∈ Rn in the
primal problem), is feasible if it satisfies the constraints of the problem.
We say that the primal problem (or the dual problem) is feasible there
exists a feasible vector for the problem.

2. We say that the primal problem, (or the dual problem), is bounded if
the objective function is bounded above, (or below) on the set of feasible
vectors.

3. We say that a feasible vector x ∈ Rm in the dual problem, (or y ∈ Rn

in the primal problem), is optimal if the objective function f (or g)
attains its maximum (or minimax) at x (or y) on the set of feasible
vectors.

Theorem 2.1.3. Suppose x and y are feasible vectors in the dual and primal
problems respectively. Then

f(y) ≤ g(x)

Proof. We have

f(y) = cyT + d
≤ xAyT + d (since x is feasible and y ≥ 0)
≤ xbT + d (since y is feasible and x ≥ 0)
= g(x)

The theorem above has a simple and important consequence that the
primal problem is bounded if the dual problem associated with it has a
feasible vector, and vice verse.
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Theorem 2.1.4. Suppose we have a pair of primal and dual problems.

1. If the primal problem is feasible, then the dual problem is bounded.

2. If the dual problem is feasible, then the primal problem is bounded.

3. If both problems are feasible, then both problems are solvable, that is,
there exists optimal vectors p and q for the dual and primal problems
respectively. Moreover we have f(p) ≤ g(q).

Proof. For the first statement, suppose the primal problem has a feasible
vector q. Then for any feasible vector x of the dual problem, we have g(x) ≥
f(q) by Theorem 2.1.3. Hence the dual problem is bounded. The proof of the
second statement is similar. For the third statement, suppose both problems
are feasible. Then both problems are bounded by the first two statements.
Observe that the set of feasible vectors is closed. It follows that the optimal
values of the objective functions f and g are attainable. Therefore there
exists optimal vectors p and q for the dual and primal problems respectively
and f(q) ≤ g(p) by Theorem 2.1.3.

Furthermore we have the following important theorem in linear program-
ming concerning the solutions to the primal and dual problems.

Theorem 2.1.5. Suppose both the dual problem and the primal problem are
feasible. Then there exist optimal vectors p and q for the dual and primal
problem respectively, and we have

f(q) = g(p)

Proof. We have proved the solvability of the problems. The equality f(q) =
g(p) can be proved using minimax theorem and we omit the proof here.

2.2 Transforming maximin problem to dual problem

To find a maximin strategy for the row player of a two-person zero sum game,
we have seen in the previous section that we need to solve the following
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maximin problem.

max v
subject to a11p1 + a21p2 + · · ·+ am1pm ≥ v

a12p1 + a22p2 + · · ·+ am2pm ≥ v
...

a1np1 + a2np2 + · · ·+ amnpm ≥ v
p1 + p2 + · · ·+ pm = 1
p1, p2, · · · , pm ≥ 0

which can be written into following matrix form

max v
subject to pA ≥ v1

p1T = 1
p ≥ 0

where 1 = (1, · · · , 1) ∈ Rm. We solve the above maximin problem in the
following two steps.

1. Transform the maximin problem to a dual problem.

2. Use simplex method to solve the dual problem.

In this section, we are going to discuss how to transform a maximin problem
to a dual problem. Note that the maximin problem is neither a primal nor
dual problem because there is a constraint p1 +p2 + · · ·+pm = 1 which is not
allowed and we do not have the constraint v ≥ 0. To transform the maximin
problem into a dual problem, first we add a constant k to each entry of A so
that the value of the game matrix is positive. Secondly, we let

xi =
pi
v
, for i = 1, 2, · · · ,m

Then to maximize v is the same as minimizing

x1 + x2 + · · ·+ xm =
p1 + p2 + · · ·+ pm

v
=

1

v

Moreover for each j = 1, 2, · · · , n, the constraint

a1jp1 + a2jp2 + · · ·+ amjpm ≥ v
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is equivalent to
a1jx1 + a2jx2 + · · ·+ amjxm ≥ 1

and the maximin problem would become a dual problem. We summarize the
above procedures as follows.

1. First, add a constant k to each entry of A so that every entry of A is
positive. (This is done to make sure that the value of the game matrix
is positive.)

2. Let
xi =

pi
v
, for i = 1, 2, · · · ,m

3. Write down the dual problem

min g(x1, x2, · · · , xm) = x1 + x2 + · · ·+ xm
subject to a11x1 + a21x2 + · · ·+ am1xm ≥ 1

a12x1 + a22x2 + · · ·+ am2xm ≥ 1
...
a1nx1 + a2nx2 + · · ·+ amnxm ≥ 1

(Note that we always have the constraints x1, x2, · · · , xm ≥ 0) or in
matrix form

min g(x) = x1T

subject to xA ≥ 1

where 1 = (1, 1 · · · , 1) ∈ Rm.

4. Suppose x = (x1, x2, · · · , xm) is an optimal vector of the dual problem
and

d = g(x) = x1 + x2 + · · ·+ xm

is the minimum value. Then

p =
x

d
=
(x1
d
,
x2
d
, · · · , xm

d

)
is a maximin strategy for the row player and the value of the game
matrix A is

v =
1

d
− k
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To find the minimax strategy for the column player, we need to solve the
following minimax problem.

min v
subject to AqT ≤ v1T

1qT = 1
q ≥ 0

where 1 = (1, · · · , 1) ∈ Rn. If we assume that v > 0, the above optimization
problem can be transformed to the following primal problem by taking yj =
qj
v

for j = 1, 2, · · · , n.

max f(y) = 1yT

subject to Ay ≤ 1T

where y = (y1, y2, · · · , yn). (Note that we always have the constraint y ≥ 0
for primal problem.) Suppose y is an optimal vector for the above primal
problem. Then q = y

d
is a minimax strategy for the column player.

2.3 Simplex method

We have seen that a pair of maximin and minimax problems can be trans-
formed to a pair of dual and primal problems. In this section, we will show
how to use simplex method to solve the dual and primal problems simultane-
ously. Recall that the primal and dual problems are optimization problems of
the following forms. Please be reminded that we always have the constraints
x,y ≥ 0.

Primal problem max f(y) = cyT + d
subject to AyT ≤ bT

Dual problem min g(x) = xbT + d
subject to xA ≥ c

We describe the simplex method as follows.

Step 1. Introduce new variables xm+1, · · · , xm+m, yn+1, · · · , yn+m which
are called slack variables and set up the tableau
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y1 · · · yn −1
x1 a11 · · · a1n b1 = −yn+1
...

...
. . .

...
...

...
xm am1 · · · amn bm = −yn+m
−1 c1 · · · cn −d = f

q · · · q q
xm+1 · · · xm+n g

Step 2.

(i) If c1, c2, · · · , cn ≤ 0, then the solution to the problems are

Primal problem maximum value of f = d
y1 = y2 = · · · = yn = 0,
yn+1 = b1, yn+2 = b2, · · · , yn+m = bm

Dual problem minimum value of g = d
x1 = x2 = · · · = xm = 0,
xm+1 = −c1, xm+2 = −c2, · · · , xm+n = −cm

(ii) Otherwise go to step 3.

Step 3. Choose l = 1, 2, · · · , n such that cl > 0.

(i) If ail ≤ 0 for all i = 1, 2, · · · ,m, then the problems are unbounded
(because yl can be arbitrarily large) and there is no solution.

(ii) Otherwise choose k = 1, 2, · · · ,m, such that

bk
akl

= min
ail>0

{
bi
ail

}
Step 4. Pivot on the entry akl and swap the variables at the pivot row
with the variables at the pivot column. The pivoting operation is
performed as follows.

yl yj
xk a∗ b = −yn+k
xi c d = −yn+i

q q
xm+l xm+j

−→

yn+k yj
xm+l

1
a

b
a

= −yl
xi − c

a
d− bc

a
= −yn+i

q q
xk xm+j
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Step 5. Go to Step 2.

To understand how the simplex method works, we introduce basic forms of
linear programming problem.

Definition 2.3.1 (Basic form). A basic form of a pair of primal and dual
problems is a problem of the form

Primal basic form max f(y) = cyT + d
subject to AyT − bT = −(yn+1, · · · , yn+m)T

y ≥ 0
Dual basic form min g(x) = xbT + d

subject to xA− c = (xm+1, · · · , xm+n)
x ≥ 0

where x = (x1, · · · , xm) ∈ Rm and y = (y1, · · · , yn) ∈ Rn. The pair of basic
forms can be represented by the tableau

y1 · · · yn −1
x1 a11 · · · a1n b1 = −yn+1
...

...
. . .

...
...

...
xm am1 · · · amn bm = −yn+m
−1 c1 · · · cn −d = f

q · · · q q
xm+1 · · · xm+n g

The variables at the rightmost column and at the bottom row are called basic
variables. The other variables at the leftmost columns and at the top row
are called independent/non-basic variables.

A pair of primal and dual problems may be expressed in basic form in
many different ways. The pivot operation changes one basic form of the
pair of primal and dual problems to another basic form of the same pair of
problems, and swaps one basic variable with one independent variable.

Theorem 2.3.2. The basic forms before and after a pivot operation are
equivalent.

Proof. The tableau before the pivot operation
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yl yj
xk a∗ b = −yn+k
xi c d = −yn+i

q q
xm+l xm+j

is equivalent to the system of equations{
axk + cxi = xm+l

bxk + dxi = xm+j
and

{
ayl + byj = −yn+k
cyl + dyj = −yn+i

⇔
{
−xm+l + cxi = −axk
bxk + dxi = xm+j

and

{
yn+k + byj = −ayl
cyl + dyj = −yn+i

⇔

{ 1

a
xm+l −

c

a
xi = xk

bxk + dxi = xm+j

and

{
1

a
yn+k +

b

a
yj = −yl

cyl + dyj = −yn+i

⇔


1

a
xm+l −

c

a
xi = xk

b

(
1

a
xm+l −

c

a
xi

)
+ dxi = xm+j

and


1

a
yn+k +

b

a
yj = −yl

c

(
1

a
yn+k +

b

a
yj

)
+ dyj = −yn+i

⇔


1

a
xm+l −

c

a
xi = xk

b

a
xm+l +

(
d− bc

a

)
xi = xm+j

and


1

a
yn+k +

b

a
yj = −yl

− c
a
yn+k +

(
d− bc

a

)
yj = −yn+i

which is equivalent to the tableau

yn+k yj
xm+l

1
a

b
a

= −yl
xi − c

a
d− bc

a
= −yn+i

q q
xk xm+j
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The above calculation shows that the constraints before and after a pivot
operation are equivalent, and the values of the objective functions f and
g for any given x1, · · · , xm, xm+1, · · · , xm+n and y1, · · · , yn, yn+1, · · · , yn+m
satisfying the constraints remain unchanged.

For each pair of basic forms, there associates a pair of basic solutions
which will be defined below. Note that the basic solutions are not really
solutions to the primal and dual problems because basic solutions are not
necessarily feasible.

Definition 2.3.3 (Basic solution). Suppose we have a pair of basic forms
represented by the tableau

y1 · · · yn −1
x1 a11 · · · a1n b1 = −yn+1
...

...
. . .

...
...

...
xm am1 · · · amn bm = −yn+m
−1 c1 · · · cn −d = f

q · · · q q
xm+1 · · · xm+n g

The basic solution to the basic form is

x1 = x2 = · · · = xm = 0, xm+1 = −c1, xm+2 = −c2, · · · , xm+n = −cn
y1 = y2 = · · · = yn = 0, yn+1 = b1, yn+2 = b2, · · · , yn+m = bm

The basic solutions are obtained by setting the independent variables, that
is the variables at the top and at the left, to be 0 and then solving for the
basic variables, that is the variables at the bottom and at the right, by the
constraints.

The basic solutions always satisfy the equalities in the constraints, but
they may not be feasible since some variables may have negative values.
However if both the dual and primal basic solutions are feasible, then they
must be optimal.

Theorem 2.3.4. Suppose we have a pair of basic forms.

1. The basic solution to the primal basic form is feasible if and only if
b1, b2, · · · , bm ≥ 0.
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2. The basic solution to the dual basic form is feasible if and only if
c1, c2, · · · , cn ≤ 0.

3. The pair of basic solutions are optimal if b1, · · · , bm ≥ 0 and c1, · · · , cn ≤
0.

Proof. Observe that the basic solutions always satisfy the equalities xA−c =
(xm+1, · · · , xm+n) and AyT − bT = −(yn+1, · · · , yn+m)T of the constraints.

1. The basic solution to the primal basic form is (y1, · · · , yn, yn+1, · · · , yn+m) =
(0, · · · , 0, b1, · · · , bm). Thus it is feasible if and only if all the variables
are non-negative which is equivalent to b1, b2, · · · , bm ≥ 0.

2. The basic solution to the dual basic form is (x1, · · · , xm, xm+1, · · · , xm+n) =
(0, · · · , 0,−c1, · · · ,−cn). Thus it is is feasible if and only if all the vari-
ables are non-negative which is equivalent to c1, c2, · · · , cn ≤ 0.

3. Suppose b1, b2, · · · , bm ≥ 0 and c1, c2, · · · , cn ≤ 0. For any feasi-
ble vectors (x1, · · · , xm, xm+1, · · · , xm+n) of the dual basic form and
(y1, · · · , yn, yn+1, · · · , yn+m) of the primal basic form, we have

f(y1, · · · , yn) = (c1, · · · , cn)(y1, · · · , yn)T + d

≤ (x1, · · · , xm)A(y1, · · · , yn)T + d

≤ (x1, · · · , xm)(b1, · · · , bm)T + d

= g(x1, · · · , xm)

On the other hand, the basic solutions (x1, · · · , xm,xm+1, · · · , xm+n)=
(0, · · · , 0,−c1, · · · ,−cn) and (y1, · · · , yn,yn+1, · · · , yn+m)= (0, · · · , 0,b1,
· · · , bm) are feasible and

f(0, · · · , 0) = d = g(0, · · · , 0)

Therefore f attains its maximin and g attains its minimum at the basic
solutions.

In practice, we do not write down the basic variables. We would swap the
variables at the left and at the top when preforming pivot operation. One
may find the basic and independent variables by referring to the following
table.
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Left Top

xi
xi is independent variable
yn+i is basic variable

xi is basic variable
yn+i is independent variable

yj
yj is basic variable
xm+j is independent variable

yj is independent variable
xm+j is basic variable

In other words, when we write down a tableau of the form

xi yl −1
yj A

bi
xk bk
−1 cj cl −d

the basic solution associated with it is

xi = −cj, xk = 0, xm+j = 0, xm+l = −cl
yj = bi, yl = 0, yn+i = 0, yn+k = bk

and the genuine tableau is

yn+i yl −1
xm+j A

bi = −yj
xk bk = −yn+k
−1 cj cl −d

q q
xi xm+l

Example 2.3.5. Solve the following primal problem.

max f = 6y1 + 4y2 + 5y3 + 150
subject to 2y1 + y2 + y3 ≤ 180

y1 + 2y2 + 3y3 ≤ 300
2y1 + 2y2 + y3 ≤ 240

Solution. Set up the tableau and perform pivot operations successively. The
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pivoting entries are marked with asterisks.

y1 y2 y3 −1
x1 2∗ 1 1 180
x2 1 2 3 300
x3 2 2 1 240
−1 6 4 5 −150

−→

x1 y2 y3 −1
y1

1
2

1
2

1
2

90
x2 −1

2
3
2

5
2

210
x3 −1 1∗ 0 60
−1 −3 1 2 −690

−→

x1 x3 y3 −1
y1 1 −1

2
1
2

60
x2 1 −3

2
5
2

∗
120

y2 −1 1 0 60
−1 −2 −1 2 −750

−→

x1 x3 x2 −1
y1

4
5
−1

5
−1

5
36

y3
2
5
−3

5
2
5

48
y2 −1 1∗ 0 60
−1 −14

5
1
5
−4

5
−846

−→

x1 y2 x2 −1
y1

3
5

1
5
−1

5
48

y3 −1
5

3
5

2
5

84
x3 −1 1 0 60
−1 −13

5
−1

5
−4

5
−858

The independent variables are y2, y4, y5 and the basic variables are y1, y3, y6.
The basic solution is

y2 = y4 = y5 = 0, y1 = 48, y3 = 84, y6 = 60

Thus an optimal vector for the primal problem is

(y1, y2, y3) = (48, 0, 84)

The maximum value of f is 858.
We may also write down an optimal solution to the dual problem. The

dual problem is

min g = 180x1 + 300x2 + 240x3 + 150
subject to 2x1 + x2 + 2x3 ≥ 6

x1 + 2x2 + 2x3 ≥ 4
x1 + 3x2 + x3 ≥ 5

From the last tableau, the independent variables are x3, x4, x6 and the basic
variables are x1, x2, x5. The basic solution is

x3 = x4 = x6 = 0, x1 =
13

5
, x2 =

4

5
, x5 =

1

5
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Therefore an optimal vector for the dual problem is

(x1, x2, x3) =

(
13

5
,
4

5
, 0

)
The minimum value of g is 858 which is equal to the maximum value of f .�

To use simplex method solving a game matrix, first we add a constant
k to every entry so that the entries are all non-negative and there is no
zero column. This is done to make sure that the value of the new matrix is
positive. Then we take b = (1, · · · , 1) ∈ Rm, c = (1, · · · , 1) ∈ Rn to set up
the initial tableau

y1 · · · yn
x1 a11 · · · a1n 1
...

...
. . .

...
...

xm am1 · · · amn 1
1 · · · 1 0

and apply the simplex algorithm. Then the value of the game matrix is

ν =
1

d
− k

where d is the maximum value of f or the minimum value of g, and k is the
constant which is added to the game matrix at the beginning. A maximin
strategy for the row player is

p =
1

d
x =

1

d
(x1, x2, · · · , xm)

and a minimax strategy for the column player is

q =
1

d
y =

1

d
(y1, x2, · · · , yn)

To avoid making mistakes, one may check that the following conditions must
be satisfied in every step.

1. The rightmost number in each row is always non-negative. This is
guaranteed by the choice of the pivoting entry.
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2. The value of the number in the lower right corner is always equal to
the sum of those entries in the lower row which associate with xi’s at
the top row (and similarly equal to the sum of those entries at the
rightmost column associate with yj’s at the leftmost column.)

3. The value of the number in the lower right corner never increases.

Finally, one may also check that the result should satisfy the following two
conditions.

1. Every entry of pA is larger than or equal to ν.

2. Every entry of AqT is less than or equal to ν.

Example 2.3.6. Solve the two-person zero sum game with game matrix(
−1 5 3 2
6 −1 0 4

)
Solution. Add k = 1 to each of the entries, we obtain the matrix(

0 6 4 3
7 0 1 5

)
Applying simplex algorithm, we have

y1 y2 y3 y4 −1
x1 0 6 4 3 1
x2 7∗ 0 1 5 1
−1 1 1 1 1 0

−→

x2 y2 y3 y4 −1
x1 0 6∗ 4 3 1
y1

1
7

0 1
7

5
7

1
7

−1 −1
7

1 6
7

2
7
−1

7

−→

x2 x1 y3 y4 −1

y2 0 1
6

2
3

∗ 1
2

1
6

y1
1
7

0 1
7

5
7

1
7

−1 −1
7
−1

6
4
21
− 3

14
−13

42

−→

x2 x1 y2 y4 −1
y3 0 1

4
3
2

3
4

1
4

y1 −1
7
− 1

28
− 3

14
17
28

3
28

−1 −1
7
− 3

14
−2

7
− 5

14
− 5

14

The independent variables are x3, x5, y2, y4, y5, y6 and the basic variables are
x1, x2, x4, x6, y1, y3. The basic solution is

x3 = x5 = 0, x1 =
3

14
, x2 =

1

7
, x4 =

2

7
, x6 =

5

14

y2 = y4 = y5 = y6 = 0, y1 =
3

28
, y3 =

1

4
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The optimal value is d =
5

14
. Therefore a maximin strategy for the row

player is

p =
1

d
(x1, x2) =

14

5

(
3

14
,
1

7

)
=

(
3

5
,
2

5

)
A minimax strategy for the column player is

q =
1

d
(y1, y2, y3, y4) =

14

5

(
3

28
, 0,

1

4
, 0

)
=

(
3

10
, 0,

7

10
, 0

)
The value of the game is

ν =
1

d
− k =

14

5
− 1 =

9

5

�

Example 2.3.7. Solve the two-person zero sum game with game matrix

A =

 2 −1 6
0 1 −1
−2 2 1


Solution. Add 2 to each of the entries, we obtain the matrix 4 1 8

2 3 1
0 4 3


Applying simplex method, we have

y1 y2 y3 −1
x1 4∗ 1 8 1
x2 2 3 1 1
x3 0 4 3 1
−1 1 1 1 0

−→

x1 y2 y3 −1
y1

1
4

1
4

2 1
4

x2 −1
2

5
2

∗ −3 1
2

x3 0 4 3 1
−1 −1

4
3
4
−1 −1

4

−→

x1 x2 y3 −1
y1

3
10

− 1
10

23
10

1
5

y2 −1
5

2
5

−6
5

1
5

x3
4
5

−8
5

39
5

1
5

−1 − 1
10
− 3

10
− 1

10
−2

5
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The independent variables are x3, x4, x5, y3, y4, y5 and the basic variables are
x1, x2, x6, y1, y2, y6. The basic solution is

x3 = x4 = x5 = 0, x1 =
1

10
, x2 =

3

10
, x6 =

1

10

y3 = y4 = y5 = 0, y1 =
1

5
, y2 =

1

5
, y6 =

1

5

The optimal value is d =
2

5
. Therefore a maximin strategy for the row player

is

p =
1

d
(x1, x2, x3) =

5

2

(
1

10
,

3

10
, 0

)
=

(
1

4
,
3

4
, 0

)
A minimax strategy for the column player is

q =
1

d
(y1, y2, y3) =

5

2

(
1

5
,
1

5
, 0

)
=

(
1

2
,
1

2
, 0

)
The value of the game is

ν =
1

d
− k =

5

2
− 1 =

1

2

One may check the result by the following calculations

pA =

(
1

4
,
3

4
, 0

) 2 −1 6
0 1 −1
−2 2 1

 =

(
1

2
,
1

2
,
3

4

)

AqT =

 2 −1 6
0 1 −1
−2 2 1




1

2
1

2
0

 =


1

2
1

2
0


One sees that the row player may guarantee that his payoff is at least

1

2
by

using p =

(
1

4
,
3

4
, 0

)
and the column player may guarantee that the payoff

to the row player is at most
1

2
by using q =

(
1

2
,
1

2
, 0

)
. �
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2.4 Minimax theorem

In this section, we prove the minimax theorem (Theorem 1.1.10). The the-
orem was first published by John von Neumann in 1928. Another way to
state the minimax theorem is that the row value and the column value of a
matrix are always the same.

Definition 2.4.1 (Row and column values). Let A be an m× n matrix.

1. The row value of A is defined1 by

νr(A) = max
x∈Pm

min
y∈Pn

xAyT

2. The column value of A is defined by

νc(A) = min
y∈Pn

max
x∈Pm

xAyT

The row value νr(A) of a game matrix A is the largest payoff of the
row player that he may guarantee himself. The column value νc(A) of A is
the least payoff that the column player may guarantee that the row player
cannot surpass. The strategies for the players to achieve these goals are
called maximin and minimax strategies.

Definition 2.4.2 (Maximin and minimax strategies). Let A be an m × n
matrix.

1. A maximin strategy is a strategy p ∈ Pm for the row player such
that

min
y∈Pn

pAyT = max
x∈Pm

min
y∈Pn

xAyT = νr(A)

2. A minimax strategy is a strategy q ∈ Pn for the column player such
that

max
x∈Pm

xAqT = min
y∈Pn

max
x∈Pm

xAyT = νc(A)

It can be seen readily that we always have νr(A) ≤ νc(A) for any matrix
A and we give a rigorous proof here.

1Note that since the payoff function π(x,y) = xAyT is continuous and the sets Pm,Pn

are compact, that is closed and bounded, the payoff function attains its maximum and
minimum by extreme value theorem.
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Theorem 2.4.3. For any m× n matrix A, we have

νr(A) ≤ νc(A)

Proof. Let p ∈ Pm be a maximin strategy for the row player and q ∈ Pn be
a minimax strategy for the column player. Then we have

νr(A) = max
x∈Pm

min
y∈Pn

xAyT

= min
y∈Pn

pAyT

≤ pAqT

≤ max
x∈Pm

xAqT

= min
y∈Pn

max
x∈Pm

xAyT

= νc(A)

Before we prove the minimax theorem, let’s study some properties of
convex sets.

Definition 2.4.4 (Convex set). A set C ⊂ Rn is said to be convex if

λx + (1− λ)y ∈ C for any x,y ∈ C, 0 ≤ λ ≤ 1

Geometrically, a set C ⊂ Rn is convex if the line segment joining any
two points in C is contained in C. It is easy to see from the definition that
intersection of convex sets is convex.

Definition 2.4.5 (Convex hull). The convex hull of a set {x1,x2, · · · ,xk}
of vectors in Rn is defined by

Conv({x1,x2, · · · ,xk})

= {x ∈ Rn : x =
k∑
i=1

λixi with λi ≥ 0 for all i and
k∑
i=1

λi = 1}



Linear programming and minimax theorem 48

The convex hull of a set of vectors can also be defined as the smallest
convex set which contains all vectors in the set.

To prove the minimax theorem, we prove a lemma concerning properties
of convex sets. Recall that the standard inner product and the norm on Rn

are defined as follows. For any x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) ∈
Rn,

1. 〈x,y〉 = x1y1 + x2y2 + · · ·+ xnyn

2. ‖x‖ =
√
〈x,x〉 =

√
x21 + x22 + · · ·+ x2n

The following lemma says that we can always use a plane to separate the
origin and a closed convex set C not containing the origin. It is a special
case of the hyperplane separation theorem2.

Lemma 2.4.6. Let C ⊂ Rn be a closed convex set with 0 6∈ C. Then there
exists z ∈ C such that

〈z,y〉 > 0 for any y ∈ C
2The hyperplane separation theorem says that we can always use a hyperplane to

separate two given sets which are closed and convex, and at least one of them is bounded.
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Proof. Since C is closed, there exists z ∈ C such that

‖z‖ = min
y∈C
‖y‖

We are going to prove that 〈z,y〉 > 0 for any y ∈ C by contradiction.
Suppose there exists y ∈ C such that 〈z,y〉 ≤ 0. Let x ∈ Rn be a point
which lies on the straight line passing through z, y, and is orthogonal to
z−y. The point x lies on the line segment joining z, y, that is lying between
z and y, because 〈z,y〉 ≤ 0.

Since z,y ∈ C and C is convex, we have x ∈ C. (The expression for x is not
important in the proof but let’s include here for reference

x =
〈y − z,y〉
‖y − z‖2

z +
〈z− y, z〉
‖y − z‖2

y

Note that 〈y−z,y〉‖y−z‖2 ,
〈z−y,z〉
‖y−z‖2 ≥ 0 because 〈z,y〉 ≤ 0 and 〈y−z,y〉

‖y−z‖2 + 〈z−y,z〉
‖y−z‖2 = 1

which shows that x lies on the line segment joining z, y.)
Moreover, we have

‖z‖2 = ‖x + (z− x)‖2

= ‖x‖2 + ‖(z− x)‖2 (since x ⊥ z− x)

> ‖x‖2
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which contradicts that z is a point in C closest to the origin 0.

The following theorem says that for any matrix A, we have either νr(A) >
0 or νc(A) ≤ 0. The key of the proof is to consider the convex hull C
generated by the column vectors of A and the standard basis for Rm, and
study the two cases 0 6∈ C and 0 ∈ C.

Theorem 2.4.7. Let A be an m × n matrix. Then one of the following
statements holds.

1. There exists probability vector x ∈ Pm such that xA > 0, that is all
coordinates of xA are positive. In this case, νr(A) > 0.

2. There exists probability vector y ∈ Pn such that AyT ≤ 0, that is all
coordinates of AyT are non-positive. In this case, νc(A) ≤ 0.

Proof. For j = 1, 2, · · · , n, let

aj = (a1j, a2j, · · · , amj) ∈ Rm

In other words, aT1 , a
T
2 , · · · , aTn are the column vectors of A and we may write

A = [aT1 , a
T
2 , · · · , aTn ]. Let

C = Conv({a1, a2, · · · , an, e1, e2, · · · , em})
be the convex hull of {a1, a2, · · · , an, e1, e2, · · · , em} where {e1, e2, · · · , em}
is the standard basis for Rm.
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We are going to prove that the two statements in the theorem correspond to
the two cases 0 6∈ C and 0 ∈ C.

Case 1. Suppose 0 6∈ C. Then by Lemma 2.4.6, there exists z =
(z1, z2, · · · , zm) ∈ Rm such that

〈z,y〉 > 0 for any y ∈ C

In particular, we have

〈z, ei〉 = zi > 0 for any i = 1, 2, · · · ,m

Then we may take

x =
z

z1 + z2 + · · ·+ zm
∈ Pm

and we have

〈x, aj〉 =
〈z, aj〉

z1 + z2 + · · ·+ zm
> 0 for any j = 1, 2, · · · , n

which means xA > 0. Let α > 0 be the smallest coordinate of the
vector xA and we have

νr(A) ≥ min
y∈Pn

xAyT ≥ α > 0

Case 2. Suppose 0 ∈ C. Then there exists λ1, λ2, · · · , λm+n with λi ≥ 0
for all i, and λ1 + λ2 + · · ·+ λm+n = 1 such that

λ1a1 + λ2a2 + · · ·+ λnan + λn+1e1 + λn+2e2 + · · ·+ λn+mem = 0

which implies

A (λ1, λ2, · · · , λn)T

= λ1a
T
1 + λ2a

T
2 + · · ·+ λna

T
n

= −(λn+1e
T
1 + λn+1e

T
2 + · · ·+ λn+meTm)

= − (λn+1, λn+2, · · · , λn+m)T

Since {e1, e2, · · · , em} are linearly independent, at least one of λ1, λ2, · · · , λn
is positive for otherwise all λ1, λ2, · · · , λm+n are zero which contradicts
λ1 + λ2 + · · ·+ λm+n = 1. Then we may take

y =
(λ1, λ2, · · · , λn)

λ1 + λ2 + · · ·+ λn
∈ Pn
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and we have

AyT = − 1

λ1 + λ2 + · · ·+ λn

 λn+1
...

λn+m

 ≤ 0

which implies
vc(A) ≤ max

x∈Pm
xAyT ≤ 0

Now we give the proof of the minimax theorem (Theorem 1.1.10) which
can be stated in the following form.

Theorem 2.4.8 (Minimax theorem). For any matrix A, the row value and
columns value of A are equal. In other words, we have

νr(A) = νc(A)

Proof. It has been proved that νr(A) ≤ νc(A) for any matrix A (Theorem
2.4.3). We are going to prove that νc(A) ≤ νr(A) by contradiction. Suppose
there exists matrix A such that νr(A) < νc(A). Let k be a real number such
that νr(A) < k < νc(A). Let A′ be the matrix obtained by subtracting every
entry of A by k. Then νr(A

′) = νr(A) − k < 0 and νc(A
′) = νc(A) − k > 0

which is impossible by applying Theorem 2.4.7 to A′. The contradiction
shows that νc(A) ≤ νr(A) for any matrix A and the proof of the minimax
theorem is complete.

Exercise 2

1. Solve the following primal problems. Then write down the dual prob-
lems and the solutions to the dual problems.

(a)
max f = 3y1 + 5y2 + 4y3 + 12

subject to 3y1 + 2y2 + 2y3 ≤ 15
4y2 + 5y3 ≤ 24

(b)
max f = 2y1 + 4y2 + 3y3 + y4

subject to 3y1 + y2 + y3 + 4y4 ≤ 12
y1 − 3y2 + 2y3 + 3y4 ≤ 7
2y1 + y2 + 3y3 − y4 ≤ 10
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2. Solve the zero sum games with the following game matrices, that is
find the value of the game, a maximin strategy for the row player and
a minimax strategy for the column player.

(a)

 2 −3 3
−2 3 1
1 1 5



(b)

 3 1 −5
−1 −2 6
−2 −1 3



(c)

 3 0 1
−1 2 −2
0 1 −1



(d)

 2 0 −2
−1 −3 3
−2 2 0



(e)


1 −1 1
−2 0 −1
1 −2 2
−1 1 −2



(f)


−3 2 0
1 −2 −1
−1 0 2
1 1 −3


3. Prove that if C1 and C2 are convex sets in Rn, then the following sets

are also convex.

(a) C1 ∩ C2

(b) C1 + C2 = {x1 + x2 : x1 ∈ C1,x2 ∈ C2}

4. Let A be an m × n matrix. Prove that the set of maximin strategies
for the row player of A is convex.

5. Let C be a convex set in Rn and x,y ∈ C. Let z ∈ Rn be a point on
the straight line joining x and y such that z is orthogonal to x− y.

(a) Find z in terms of x and y.

(b) Suppose 〈x,y〉 < 0. Prove that z ∈ C.

6. Let A be an m × n matrix with column vectors aT1 , a
T
2 , · · · , aTn . Let

νc(A) be the column value of A and let

C = Conv({a1, a2, · · · , an, e1, e2, · · · , em})

where {e1, e2, · · · , em} is the standard basis for Rm. Prove that if
νc(A) ≤ 0, then 0 ∈ C.



3 Bimatrix games

In this chapter, we study bimatrix game. A bimatrix game is a two-person
game with perfect information. In a bimatrix game, two players, player
I and player II, choose their strategies simultaneously. Then the payoffs
to the players depend on the strategies used by the players. Unlike zero
sum game, we have no assumption on the sum of payoffs to the players.
We will first study non-cooperative games where the solutions are the Nash
equilibria. Then we will study Nash’s bargaining model and threat solution in
cooperative game with nontransferable and transferable utilities respectively.

3.1 Nash equilibrium

A bimatrix game can be represented by two matrices, hence its name.

Definition 3.1.1 (Bimatrix game). The normal form of a bimatrix game
is given by a pair of m × n matrices (A,B). The matrices A and B are
payoff matrices for the row player (player I) and the column player (player
II) respectively. Suppose the row player uses strategy x ∈ Pm and the column
player uses strategy y ∈ Pn. Then the payoff to the row player and column
player are given by the payoff functions

π(x,y) = xAyT

ρ(x,y) = xByT

respectively.

Definition 3.1.2. The safety level, or security level, of the row player
is

µ = max
x∈Pm

min
y∈Pn

xAyT = ν(A)

where ν(A) denotes the value of the matrix A when A is considered as the
game matrix of a two-person zero sum game. The safety level of the column
player is

ν = max
y∈Pn

min
x∈Pm

xByT = ν(BT )

where ν(BT ) is the value of the transpose BT of B.

Note that the value of a matrix is defined to be the maximum payoff that
the row payoff may guarantee himself. The safety level of the column player
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of the bimatrix game (A,B) is the value νBT of the transpose BT of B, not
the value of B.

Definition 3.1.3 (Nash equilibrium). Let (A,B) be a game bimatrix. We
say that a pair of strategies (p,q) is an equilibrium pair, or mixed Nash
equilibrium, or just Nash equilibrium, for (A,B) if

xAqT ≤ pAqT for any x ∈ Pm

and
pByT ≤ pBqT for any y ∈ Pn

Example 3.1.4 (Prisoner dilemma). Let

(A,B) =

(
(−5,−5) (−1,−10)
(−10,−1) (−2,−2)

)
which represents a version of the famous prisoner dilemma. The strategy
pair (p,q) = ((1, 0), (1, 0)) is a Nash equilibrium. The Nash equilibrium is
unique in this example. �

Example 3.1.5 (Dating game). Consider

(A,B) =

(
(4, 2) (0, 0)
(0, 0) (1, 3)

)
.

It is an example of a dating game. There are two obvious Nash equi-
libria, which are pure Nash equilibria, namely (p,q) = ((1, 0), (1, 0)) and
((0, 1), (0, 1)). The game has one more mixed Nash equilibrium (non-pure
Nash equilibrium which is harder to find out. To see what it is, suppose the
row player uses strategy x = (x, 1− x), where 0 ≤ x ≤ 1. Then

xB = (x, 1− x)

(
2 0
0 3

)
= (2x, 3− 3x)

It means that the payoff to the column player is 2x, and 3−3x if the column
player constantly uses his 1st, and 2nd strategies respectively. Setting 2x =
3− 3x, we have x = 0.6 and

(0.6, 0.4)B = (0.6, 0.4)

(
2 0
0 3

)
= (1.2, 1.2)
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Thus if the row player uses mixed strategy (0.6, 0.4), then the payoff to the
column player is always 1.2 no matter how the column player plays. Similarly
suppose the column player uses y = (y, 1− y), 0 ≤ y ≤ 1. Then

AyT =

(
4 0
0 1

)(
y

1− y

)
=

(
4y

1− y

)
It means that the payoff to the row player is 4y, and 1− y if the row player
constantly uses his 1st, and 2nd strategies respectively. Setting 4y = 1 − y,
we have y = 0.2. Then(

4 0
0 1

)(
0.2
0.8

)
=

(
0.8
0.8

)
Thus if the column player uses mixed strategy (0.2, 0.8), then the payoff to
the row player is always 0.8 no matter how the row player plays. Therefore
the strategy pair (p,q) = ((0.6, 0.4), (0.2, 0.8)) is a Nash equilibrium. In
conclusion, the dating game has three Nash equilibria and we list them in
the following table.

Nash equilibrium and the corresponding payoff pair
Row player’s strategy p Column player’s strategy q Payoff pair (π, ρ)

(1, 0) (1, 0) (4, 2)
(0, 1) (0, 1) (1, 3)

(0.6, 0.4) (0.2, 0.8) (0.8, 1.2)

�
Note that in the third Nash equilibrium of the above example, the strategy

for the row player p = (0.6, 0.4) is the minimax strategy for the column player
of BT , not the maximin strategy for the row player of A. That means what
the row player should do is to fix the payoff to its opponent (the column
player) to be 1.2 instead of guaranteeing the payoff to himself to be 0.8.
Similarly, the strategy for the column player q = (0.2, 0.8) in this Nash
equilibrium is the minimax strategy for the column player of A. So the
column player should use a strategy to fix the row player’s payoff instead of
guaranteeing his own payoff.

3.2 Nash’s theorem

One of the most fundamental works in game theory is the following theorem
of Nash which greatly extended the minimax theorem (Theorem 1.1.10). The
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theorem says that Nash equilibrium always exists in a non-cooperative game
with finitely many players.

Theorem 3.2.1 (Nash’s theorem). Every finite3 game with finite number of
players has at least one Nash equilibrium.

Nash invoked the following celebrated theorem in topology to prove his
theorem.

Theorem 3.2.2 (Brouwer’s fixed-point theorem). Let X be a topological
space which is homeomorphic to the closed unit ball Dn = {x ∈ Rn : ‖x‖ ≤
1}. Then any continuous map T : X → X has at least one fixed-point, that
is, there exists x ∈ X such that T (x) = x.

Remarks:

1. Two topological space X and Y are homeomorphic if there exists bi-
jective map ϕ : X → Y such that both ϕ and its inverse ϕ−1 are
continuous.

2. The set Pn = {(x1, x2, · · · , xn) ∈ Rn : x1, · · · , xn ≥ 0 and x1 + x2 +
· · ·+ xn = 1} of probability vectors in Rn is homeomorphic to Dn−1.

3A game is finite if the number of strategies of each player is finite.
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Moreover Pm × Pn is homeomorphic to Dm+n−2.

The proof of the Brouwer’s fixed-point theorem is out of the propose and
scope of this notes. Now we give the proof of Nash’s theorem assuming the
Brouwer’s fixed-point theorem.

Proof of Nash’s theorem. For simplicity, we consider two-person game only.
The proof for the general case is similar. Let (A,B) be the game bimatrix
of a two-person game. Define T : Pm × Pn → Pm × Pn by

T (x,y) = (u,v) = ((u1, u2, · · · , um), (v1, v2, · · · , vn))
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where for k = 1, 2, · · · ,m and l = 1, 2, · · · , n,

uk =
xk + ck

1 +
m∑
i=1

ci

and vl =
yl + dl

1 +
n∑
j=1

dj

and

ck = max{π(ek,y)− π(x,y) = ekAyT − xAyT , 0}
dl = max{ρ(x, el)− ρ(x,y) = xBeTl − xByT , 0}

Here ek, el are vectors in the standard bases in Rm, Rn respectively. By
definition, ck is the increase of payoff of the first player if the first player
changes his strategy from x to ek while the strategy of the second player
remains at y. However, if there is no increase, then we set ck = 0. The
numbers dk are similarly defined. Note that u ∈ Pm and v ∈ Pn because

ck, dl ≥ 0

and

m∑
k=1

 xk + ck

1 +
m∑
i=1

ci

 =

m∑
k=1

xk +
m∑
k=1

ck

1 +
m∑
i=1

ci

=

1 +
m∑
k=1

ck

1 +
m∑
i=1

ci

= 1

n∑
l=1

 yl + dl

1 +
n∑
j=1

dj

 =

n∑
l=1

yl +
n∑
l=1

dl

1 +
n∑
j=1

dj

=

1 +
n∑
l=1

dl

1 +
n∑
j=1

dj

= 1

Now T is a continuous map from Pm × Pn to Pm × Pn. By Brouwer’s
fixed-point theorem (Theorem 3.2.2), there exists (p,q) ∈ Pm × Pn such
that

T (p,q) = (p,q)

The proof of Nash’s theorem is complete if we can prove that (p,q) is a Nash
equilibrium. Suppose on the contrary that (p,q) is not a Nash equilibrium.
Then either there exists r ∈ Pm such that rAqT > pAqT or there exists
s ∈ Pn such that pBsT > pBqT . Without loss of generality, we consider the
former case. Write r = (r1, r2, · · · , rm). Since

pAqT < rAqT =
m∑
k=1

rkekAqT
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and r is a probability vector, we see that there exists 1 ≤ k ≤ m such that

pAqT < ekAqT

It follows that
ck = max{ekAqT − pAqT , 0} > 0

and thus
m∑
i=1

ci > 0. On the other hand, since

pAqT =
m∑
i=1

pieiAqT

and p is a probability vector, there exists 1 ≤ r ≤ m such that pr > 0 and

erAqT ≤ pAqT

which implies, by the definition of cr, that cr = 0. Hence we have

pr + cr

1 +
m∑
i=1

ci

=
pr

1 +
m∑
i=1

ci

≤ pr
1 + ck

< pr

which contradicts that (p,q) is a fixed-point of T . Therefore (p,q) is a Nash
equilibrium and the proof of Nash’s theorem is complete. �

We have seen in the proof of Nash’s theorem that (p,q) is a Nash equilib-
rium if it is a fixed-point of T . As a matter of fact, the converse of this state-
ment is also true. For if (p,q) is a Nash equilibrium, then eiAqT ≤ pAqT

for any 1 ≤ i ≤ m. Thus ci = 0 for any 1 ≤ i ≤ m. Similarly dj = 0 for any
1 ≤ j ≤ n. Therefore T (p,q) = (p,q).

To find Nash equilibria of a 2 × 2 game bimatrix (A,B), we may let
x = (x, 1− x), y = (y, 1− y) and consider the payoff functions

π(x, y) = π(x,y) = xAyT

ρ(x, y) = ρ(x,y) = xByT

Define

P = {(x, y) : π(x, y) attains its maximum at x for fixed y.}
Q = {(x, y) : ρ(x, y) attains its maximum at y for fixed x.}

Then (x,y) is a Nash equilibrium if and only if (x, y) ∈ P ∩Q.
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Example 3.2.3 (Prisoner dilemma). Consider the prisoner dilemma (Ex-
ample 3.1.4) with bimatrix

(A,B) =

(
(−5,−5) (−1,−10)
(−10,−1) (−2,−2)

)
The payoff to the row player is given by

π(x, y) = (x, 1− x)

(
−5 −1
−10 −2

)(
y

1− y

)
= (x, 1− x)

(
−4y − 1
−8y − 2

)
Since −8y − 2 < −4y − 1 for any 0 ≤ y ≤ 1, we have

P = {(1, y) : 0 ≤ y ≤ 1}

On the other hand,

ρ(x, y) = (x, 1− x)

(
−5 −10
−1 −2

)(
y

1− y

)
= (−4x− 1,−8x− 2)

(
y

1− y

)
Since −8x− 2 < −4x− 1 for any 0 ≤ x ≤ 1, we have

Q = {(x, 1) : 0 ≤ p ≤ 1}
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Now
P ∩Q = {(1, 1)}

Therefore the game has a unique Nash equilibrium (p,q) = ((1, 0), (1, 0)).�

Example 3.2.4 (Dating game). Consider the dating game (Example 3.1.5)
with bimatrix

(A,B) =

(
(4, 2) (0, 0)
(0, 0) (1, 3)

)
We have

π(x, y) = (x, 1− x)

(
4 0
0 1

)(
y

1− y

)
= (x, 1− x)

(
4y

1− y

)
Now 

4y < 1− y if 0 ≤ y <
1

5

4y = 1− y if y =
1

5

4y > 1− y if
1

5
< y ≤ 1

Thus

P =

{
(x, y) :

(
x = 0 ∧ 0 ≤ y <

1

5

)
∨
(

0 ≤ x ≤ 1 ∧ y =
1

5

)
∨
(
x = 1 ∧ 1

5
< y ≤ 1

)}
On the other hand,

ρ(x, y) = (x, 1− x)

(
2 0
0 3

)(
y

1− y

)
= (2x, 3− 3x)

(
y

1− y

)
Now 

2x < 3− 3x if 0 ≤ x <
3

5

2x = 3− 3x if x =
3

5

2x > 3− 3x if
3

5
< x ≤ 1
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Thus

Q =

{
(x, y) :

(
0 ≤ x <

3

5
∧ y = 0

)
∨
(
x =

3

5
∧ 0 ≤ y ≤ 1

)
∨
(

3

5
< x ≤ 1 ∧ y = 1

)}

Now

P ∩Q =

{
(0, 0), (1, 1),

(
3

5
,
1

5

)}
Therefore the game has three Nash equilibria

(p,q) = ((1, 0), (1, 0)), ((0, 1), (0, 1)),

(
3

5
,
2

5

)
,

((
1

5
,
4

5

))
.

We list the associated payoff pairs in the following table.

p q (π, ρ)
(1, 0) (1, 0) (4, 2)
(0, 1) (0, 1) (1, 3)(
3

5
,
2

5

) (
1

5
,
4

5

) (
4

5
,
6

5

)
�

Definition 3.2.5. Let (A,B) be a game bimatrix.
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1. We say that two Nash equilibria (p,q) and (p′,q′) are interchange-
able if (p′,q) and (p,q′) are also Nash equilibria.

2. We say that two Nash equilibria (p,q) and (p′,q′) are equivalent if

π((p,q), ρ(p,q)) = π((p′,q′), ρ(p′,q′))

3. We say that a bimatrix game (A,B) is solvable in the Nash sense
if any two Nash equilibria are interchangeable and equivalent.

For the prisoner dilemma (Example 3.2.3), there is only one Nash equi-
librium. Thus the prisoner dilemma is solvable in the Nash sense. For the
dating game (Example 3.2.4), there are three Nash equilibria which are not
interchangeable. So the dating game is not solvable in the Nash sense.

Example 3.2.6. Solve the game bimatrix

(A,B) =

(
(1, 4) (5, 1)
(4, 2) (3, 3)

)
Solution. Consider

AyT =

(
1 5
4 3

)(
y

1− y

)
=

(
−4y + 5
y + 3

)
Now 

−4y + 5 > y + 3 if 0 ≤ y <
2

5

−4y + 5 = y + 3 if y =
2

5

−4y + 5 < y + 3 if
2

5
< y ≤ 1

We see that

P =

{
(x, y) :

(
x = 0 ∧ 2

5
< y ≤ 1

)
∨
(

0 ≤ x ≤ 1 ∧ y =
2

5

)
∨
(
x = 1 ∧ 0 ≤ y <

2

5

)}
On the other hand

xB = (x, 1− x)

(
4 1
2 3

)
= (2x+ 2,−2x+ 3)
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and 
2x+ 2 < −2x+ 3 if 0 ≤ x <

1

4

2x+ 2 = −2x+ 3 if x =
1

4

2x+ 2 > −2x+ 3 if
1

4
< x ≤ 1

We see that

Q =

{
(x, y) :

(
0 ≤ x <

1

4
∧ y = 0

)
∨
(
x =

1

4
∧ 0 ≤ y ≤ 1

)
∨
(

1

4
< x ≤ 1 ∧ y = 1

)}

Now

P ∩Q =

{(
1

4
,
2

5

)}
Therefore the game has Nash equilibrium

(p,q) =

((
1

4
,
3

4

)
,

(
2

5
,
3

5

))
and is solvable in the Nash sense since the Nash equilibrium is unique. �

3.3 Nash bargaining model

A bimatrix game can be played as a cooperative game with non-transferable
utility. This means the players may make agreements on what strategies
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they are going to use. However they are not allowed to share the payoffs they
obtained in the game. In such a game, players may use joint strategies.

Definition 3.3.1. Let (A,B) be an m× n bimatrix of a two-person game.

1. A joint strategy of (A,B) is an m× n matrix

P =

 p11 · · · p1n
...

. . .
...

pm1 · · · pmn


which satisfies

(i) pij ≥ 0 for any i = 1, 2, · · · ,m and j = 1, 2, · · · , n

(ii)
m∑
i=1

n∑
j=1

pij = 1

In other words, P is a joint strategy if it is a probability matrix.
The set of all m× n probability matrices is denoted by

Pm×n = {P = [pij] : pij ≥ 0 and
∑

pij = 1}

In particular, if p = (p1, · · · , pm) ∈ Pm and q = (q1, · · · , qn) ∈ Pn,
then

pTq =

 p1q1 · · · p1qn
...

. . .
...

pmq1 · · · pmqn

 ∈ Pm×n
is a joint strategy. In this case, the row player uses strategy p and the
column player uses strategy q independently. Not all joint strategies
are of this form. For example (

1
2

0
0 1

2

)
cannot be expressed as the form pTq. When this joint strategy is used,
the players may flip a coin and both use their first strategies if a ‘head’
is obtained and both use their second strategies if a ‘tail’ is obtained.
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2. For joint strategy P = [pij] ∈ Pm×n, the payoff u to the row player and
the payoff v to the column player are given by the payoff pair

(u(P ), v(P )) =

(∑
i,j

aijpij,
∑
i,j

bijpij

)
=

∑
i,j

pij(aij, bij)

3. The cooperative region of (A,B) is the set of all feasible payoff pairs

R = {(u(P ), v(P )) ∈ R2 : P ∈ Pm×n}

=

{
(u, v) ∈ R2 : (u, v) =

∑
i,j

pij(aij, bij) for some [pij] ∈ Pm×n
}

In other words, the cooperative region R is the convex hull of the set
of points {(aij, bij) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} in R2. Note that R is a
closed convex polygon in R2.
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4. The status quo point is the payoff pair (µ, ν) for the players as-
sociated to the solution of the game when (A,B) is considered as a
non-cooperative game. In other words, the status quo point is the pay-
offs that the players may expect if the negotiations break down. Unless
otherwise specified, we will take (µ, ν) = (ν(A), ν(BT )) to be the status
quo point where v(A) and ν(BT ) are the values of A and the transpose
BT of B respectively.

5. We say that a payoff pair (u, v) is Pareto optimal if u′ ≥ u, v′ ≥ v
and (u′, v′) ∈ R implies (u′, v′) = (u, v) where R is the cooperative
region.

6. The bargaining set of (A,B) is the set of Pareto optimal payoff pairs
(u, v) ∈ R such that u ≥ µ and v ≥ ν where (µ, ν) is the status quo
point. In other words, the bargaining set is

{(u, v) ∈ R : u ≥ µ, v ≥ ν and (u, v) is Pareto optimal}



Bimatrix games 69

When the status quo point is not Pareto optimal, the two players of the
game would have a tendency to cooperate. The bargaining problem is a
problem to understand how the players should cooperate in this situation.
Nash proposed that the solution to the bargaining problem is a function,
called the arbitration function, depending only on the cooperative region R
and the status quo point (µ, ν) ∈ R, which satisfies certain properties called
Nash bargaining axioms.

Definition 3.3.2 (Nash bargaining axioms). An arbitration function is
a function (α, β) = A(R, (µ, ν)) defined for a closed and bounded convex set
R ⊂ R2 (cooperative region) and a point (µ, ν) ∈ R (status quo point) such
that the following Nash bargaining axioms are satisfied.

1. (Individual rationality) α ≥ µ and β ≥ ν.

2. (Pareto optimality) For any (u, v) ∈ R, if u ≥ α and v ≥ ν, then
(u, v) = (α, β).

3. (Feasibility) (α, β) ∈ R.
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4. (Independence of irrelevant alternatives) If R′ ⊂ R, (µ, ν) ∈ R′ and
(α, β) = A(R, (µ, ν)) ∈ R′, then A(R′, (µ, ν)) = (α, β) = A(R, (µ, ν)).

5. (Invariant under linear transformation) Let a, b, c, d ∈ R be any real
numbers with a, c > 0. Let R′ = {(au + b, cv + d) : (u, v) ∈ R} and
(µ′, ν ′) = (aµ+ b, cν + d). Then A(R′, (µ′, ν ′)) = (aα + b, cβ + d).

6. (Symmetry) Suppose R is symmetry, that is (u, v) ∈ R implies (v, u) ∈
R, and µ = ν. Then α = β.

Theorem 3.3.3 (Nash bargaining solution). There exists a unique arbitra-
tion function A(R, (µ, ν)) for closed and bounded convex setR and (µ, ν) ∈ R
which satisfies the Nash bargaining axioms.

Before proving Theorem 3.3.3, first we prove a lemma.

Lemma 3.3.4. Let R ⊂ R2 be any closed and bounded convex set and
(µ, ν) ∈ R. Let

K = {(u, v) ∈ R : u ≥ µ, v ≥ ν}
Let g : K → R be the function defined by

g(u, v) = (u− µ)(v − ν) for (u, v) ∈ K

Suppose U = {(u, v) ∈ K : u > µ, v > ν} 6= ∅. Then there exists unique
(α, β) ∈ K such that

g(α, β) = max
(u,v)∈K

g(u, v)
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Proof. Since g is continuous and K is closed and bounded, g attains its
maximum at some point (α, β) ∈ K and let

M = max
(u,v)∈K

g(u, v)

be the maximum value of g on K. We are going to prove by contradiction
that the maximum point of g on K is unique. Suppose on the contrary that
there exists (α′, β′) ∈ K with (α′, β′) 6= (α, β) such that

g(α′, β′) = g(α, β) = M

Then either α′ > α and β′ < β, or α′ < α and β′ > β. In both case we have
(α− α′) (β′ − β) > 0. Observe that the mid-point (α+α

′

2
, β+β

′

2
) of (α, β) and

(α′, β′) lies in K since K is convex. On the other hand, the value of g at
(α+α

′

2
, β+β

′

2
) is

g

(
α + α′

2
,
β + β′

2

)
=

(
α + α′

2
− µ, β + β′

2
− ν
)

=
1

4
((α− µ) + (α′ − µ)) ((β − ν) + (β′ − ν))

=
1

4
((α− µ)(β − ν) + (α− µ)(β′ − ν)

+(α′ − µ)(β − ν) + (α′ − µ)(β′ − ν))

=
1

4
((α− µ)(β − ν) + (α− µ)((β′ − β) + (β − ν))

+(α′ − µ)((β − β′) + (β′ − ν)) + (α′ − µ)(β′ − ν))

=
1

4
(2(α− µ)(β − ν) + (α− µ)(β′ − β)

+(α′ − µ)(β − β′) + 2(α′ − µ)(β′ − ν))

=
1

4
(2g(α, β) + (α− α′)(β′ − β) + 2g(α′, β′))

=
1

4
(2M + (α− α′) (β′ − β) + 2M)

> M

This contradicts that the maximum value of g on K is M . Therefore g attains
its maximum at a unique point.
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Proof of existence of arbitration function. For any closed and bounded convex
set R and (µ, ν) ∈ R, let K = {(u, v) ∈ R : u ≥ µ, v ≥ ν}, U = {(u, v) ∈
R : u > µ, v > ν} and define (α, β) = A(R, (µ, ν)) as follows:

1. If U 6= ∅, then (α, β) = A(R, (µ, ν)) ∈ K is the unique maximum point
of g(u, v) = (u− µ)(v − ν) in K, that is

g(α, β) = max
(u,v)∈K

g(u, v)

2. If U = ∅, then (α, β) = A(R, (µ, ν)) ∈ K is the unique maximum point
of u+ v on K, that is

α + β = max
(u,v)∈K

(u+ v)

We are going to prove that the function A(R, (µ, ν)) satisfies the Nash bar-
gaining axioms. We prove only for the first case U 6= ∅ and the second case
is obvious.

1. (Individual rationality) It follows by the definition that (α, β) ∈ K and
we have α ≥ µ and β ≥ ν.

2. (Pareto optimality) Suppose there exists (α′, β′) ∈ R such that α′ ≥ α
and β′ ≥ β. Then g(α′, β′) ≥ g(α, β) which implies that (α′, β′) =
(α, β) since the maximum point of g on K is unique.

3. (Feasibility) Since (α, β) ∈ K ⊂ R by definition, we have (α, β) ∈ R.

4. (Independence of irrelevant alternatives) Suppose R′ ⊂ R is a subset of
R which contains both (µ, ν) and (α, β). Since g attains its maximum
at (α, β) on K, it also attains its maximum at (α, β) on K ′ = K ∩R′.
Thus

A(R′, (µ, ν)) = (α, β) = A(R, (µ, ν))

5. (Invariant under linear transformation) Let a, b, c, d ∈ R with a, c > 0.
Let R′ = {(u′, v′) = (au + b, cv + d) : (u, v) ∈ R} and (µ′, ν ′) =
(aµ+ b, cν + d). Then

g′(u′, v′) = (u′ − µ′)(v′ − ν ′)
= ((au+ b)− (aµ+ b))((cv + d)− (cν + d))

= ac(u− µ)(v − ν)

= acg(u, v)
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Hence g′ attains its maximum at (α′, β′) = (aα + b, cβ + d) on K ′ =
{(u′, v′) = (au+ b, cv+ d) : (u, v) ∈ K} since g attains its maximum at
(α, β) on K. Therefore A(R′, (µ, ν)) = (α′, β′).

6. (Symmetry) Suppose R is symmetric and µ = ν. Then

g(u, v) = (u− µ)(v − µ) = g(v, u)

and (v, u) ∈ K if and only if (u, v) ∈ K. Thus if g attains its maximum
at (α, β) on K, then g also attains its maximum at (β, α) on K. By
uniqueness of maximum point of g on K, we see that (β, α) = (α, β)
which implies α = β.

�

Proof of uniqueness of arbitration function. Suppose A′(R, (µ, ν)) is another
arbitration function satisfying the Nash bargaining axioms. Let R be a
closed and bounded convex set and (µ, ν) ∈ R. By applying a linear trans-
formation, we may assume that (µ, ν) = (0, 0) and (α, β) = A(R, (0, 0)) =
(0, 0), (1, 0), (0, 1) or (1, 1). We are going to prove that A′(R, (0, 0)) = (α, β).

Case 1. (α, β) = (0, 0):

In this case K = {(0, 0)} and we have A′(R, (0, 0)) since (α, β) ∈ K.

Case 2. (α, β) = (1, 0) or (0, 1):

We consider the case for (α, β) = (1, 0) and the other case is similar.
By definition of (α, β), we must have K = {(u, 0) : 0 ≤ u ≤ 1}. By the
individual rationality, we have A′(R, (0, 0)) ∈ K. By Pareto optimality,
we have A′(R, (0, 0)) = (1, 0).

Case 3. (α, β) = (1, 1):

First we claim that u + v ≤ 2 for any (u, v) ∈ K. We prove the claim
by contradiction. Suppose there exists (u, v) ∈ K such that u+ v > 2.
Then for any 0 ≤ t ≤ 1, we have

t(u, v) + (1− t)(1, 1) = ((u− 1)t+ 1, (v − 1)t+ 1) ∈ K

since K is convex. Let g(t) be the value of g at the point t(u, v) + (1−
t)(1, 1) ∈ K lying on the line segment joining (1, 1) and (u, v).
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Then

g(t) = g(1 + (u− 1)t, 1 + (v − 1)t)

= ((u− 1)t+ 1)((v − 1)t+ 1)

= (u− 1)(v − 1)t2 + (u+ v − 2)t+ 1

We have
g′(t) = 2(u− 1)(v − 1)t+ u+ v − 2

which implies
g′(0) = u+ v − 2 > 0

It follows that there exists 0 < t ≤ 1 such that

g(t) > g(0) = g(1, 1)

which contradicts that g attains its maximum at (1, 1) on K. Hence we
proved the claim that u+ v ≤ 2 for any (u, v) ∈ K. Now let R′ be the
convex hull of {(u, v) : (u, v) ∈ R or (v, u) ∈ R}. Then u′ + v′ ≤ 2 for
any (u′, v′) ∈ R′ since u + v ≤ 2 for any (u, v) ∈ R. By symmetry, we
have A′(R′, (0, 0)) = (α′, α′) for some (α′, α′) ∈ R′. Now α′ ≤ 1 since
α′ + α′ ≤ 2. Since (1, 1) ∈ K ⊂ R′, we have A′(R′, (0, 0)) = (1, 1) by
Pareto optimality. Therefore A′(R, (0, 0)) = (1, 1) by independence of
irrelevant alternative.
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This completes the proof that A′(R, (µ, ν)) = A(R, (µ, ν)) for any closed and
bounded convex set R and any point (µ, ν) ∈ R. �

Example 3.3.5 (Dating game). Consider the dating game given by the bi-
matrix

(A,B) =

(
(4, 2) (0, 0)
(0, 0) (1, 3)

)
We use (µ, ν) = (ν(A), ν(BT )) = (4

5
, 6
5
) as the status quo point (see

Example 3.1.5). We need to find the payoff pair on

K =

{
(u, v) ∈ R : u ≥ 4

5
, v ≥ 6

5

}
so that the function

g(u, v) =

(
u− 4

5

)(
v − 4

5

)
attains its maximum. Now any payoff pair (u, v) along the line segment
joining (1, 3) and (4, 2) satisfies

v − 3 = −1

3
(u− 1)

v = −1

3
u+

10

3

Thus

g(u, v) =

(
u− 4

5

)(
v − 6

5

)
=

(
u− 4

5

)(
−1

3
u+

32

15

)
= −1

3
u2 +

12

5
u− 128

75

attains its maximum when

u =
18

5
and v =

32

15

Since this payoff pair lies on the line segment joining (1, 3) and (4, 2), the
arbitration pair of the game with status quo point (µ, ν) = (4

5
, 6
5
) is

(α, β) =

(
18

5
,
32

15

)
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�
To find the arbitration pair, one may use the fact that if g(u, v) = (u −

µ)(v−ν) attains it maximum at the point (α, β) over the line joining (u0, v0)
and (u1, v1), then the slope of the line joining (α, β) and (µ, ν) would be
equal to the negative of the slope of line joining (u0, v0) and (u1, v1). Using
this fact, one may see easily that (α, β) satisfies

β − v0 =
v1 − v0
u1 − u0

(α− u0)

β − ν = − v1 − v0
u1 − u0

(α− µ)

Hence if the payoff pair (α, β) obtained by solving the above system of equa-
tions lies on the line segment joining (u0, v0) and (u1, v1), which implies that
(α, β) lies on the bargaining set, then (α, β) is the arbitrary pair.

Example 3.3.6. Let

(A,B) =

(
(2, 6) (6, 2) (−1, 4)
(4, 3) (2, 7) (5, 5)

)
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The reader may check that the values of A, BT are 3.2, 4.5 respectively
and we use (µ, ν) = (3.2, 4.5) as the status quo point. We need to consider
two line segments.

1. The line segment joining (5, 5) and (6, 2):

The equation of the line segment is given by v = −3u+ 20. The value
of g(u, v) along the line segment is

g(u, v) = (u− 3.2)(v − 4.5)

= (u− 3.2)(−3u+ 15.5)

= −3u2 + 25.1u+ 49.6

which attain its maximum at (251
60
, 149

20
). Since this payoff pair lies out-

side the line segment joining (5, 5) and (6, 2) and thus lies outside K, we
know that the arbitration pair does not lie on the line segment joining
(5, 5) and (6, 2).

2. The line segment joining (2, 7) and (5, 5):

The slope of the line joining (2, 7) and (5, 5) is −2
3
. To find the max-

imum point of g(u, v) along the line joining (2, 7) and (5, 5), we may



Bimatrix games 78

solve 
v − 7 = −2

3
(u− 2)

v − 4.5 =
2

3
(u− 3.2)

which gives (u, v) = (4.475, 5.35). Since this payoff pair lies on the line
segment joining (2, 7) and (5, 5), we conclude that the arbitration pair
is (α, β) = (4.475, 5.35).

�

3.4 Threat solution

In this section, we study two-person cooperative games with transfer-
able utility. We assume that the players are ’rational’ in the sense that,
given a choice between two possible outcomes of differing personal utility,
each player will select the one with the higher utility. In the model of the
cooperative game with transferable utility, we assume there is a period of
preplay negotiation, during which the players meet to discuss the possibility
of choosing a joint strategy together with some possible side payment to in-
duce cooperation. They also discuss what will happen if they cannot come
to an agreement; each may threaten to use some unilateral strategy that is
bad for the opponent. If they do come to an agreement, it may be assumed
that the payoff vector is Pareto optimal.

In the discussion, both players may make some threat of what strategy
they will take if an agreement is not reached. However, a threat to be be-
lievable must not hurt the player who makes it to a greater degree than the
opponent. Such a threat would not be credible. For example, consider the
following bimatrix game. (

(5, 3) (0,−4)
(0, 0) (3, 6)

)
If the players come to an agreement, it will be to use the lower right corner
because it has the greatest total payoff, namely 9. Player II may argue that
she should receive at least half the sum, 4.5. She may even feel generous in
’giving up’ as a side payment some of the 6 she would be winning. However,
Player I may threaten to use row 1 unless he is given at least 5. That threat
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is very credible since if Player I uses row 1, Player II cannot make a counter-
threat to use column 2 because it would hurt her more than Player I. The
counter-threat would not be credible.

In this model of the preplay negotiation, the threats and counter-threats
may be made and remade until time to make a decision. Ultimately the play-
ers announce what threats they will carry out if agreement is not reached.
It is assumed that if agreement is not reached, the players will leave the ne-
gotiation table and carry out their threats. However, being rational players,
they will certainly reach agreement, since this gives a higher utility. The
threats are only a formal method of arriving at a reasonable amount for the
side payment, if any, from one player to the other.

The problem then is to choose the threats and the proposed side payment
judiciously. The players use threats to influence the choice of the final payoff
vector. The problem is how do the threats influence the final payoff vector,
and how should the players choose their threat strategies? For two-person
games with transferable utility, there is a very convincing answer.

Definition 3.4.1 (Threat solution). Let (A,B) be a game bimatrix.

1. The threat matrix is the matrix T = A−B.

2. The threat differential δ is the value of the threat matrix T = A−B.
In other words, δ = v(T ) = v(A−B).

3. The threat strategies of Player I and Player II are the maximin
strategy pd and the minimax strategy qd of the threat matrix T = A−B
respectively.

4. The threat point, or disagreement point, is the payoff pair (µd, νd)
when the threat strategies pd, qd are being used. In other words,

(µd, νd) = (pdAqTd ,pdBqTd ).

Note that δ = µd − νd.

5. The threat solution is the payoff pair

(ϕ1, ϕ2) =

(
σ + δ

2
,
σ − δ

2

)
=

(
σ + µd − νd

2
,
σ − µd + νd

2

)
.

where
σ = max

i,j
(aij + bij)



Bimatrix games 80

is the maximum total payoff which is the maximum entry of the sum
matrix A+B. Note that (ϕ1, ϕ2) is the solution to{

ϕ1 + ϕ2 = σ

ϕ1 − ϕ2 = δ

If the players come to an agreement, then they will agree to play to
achieve the largest possible total payoff σmax

i,j
(aij + bij) as the payoff to be

divided between them. So it is easy to see that the threat solution (ϕ1, ϕ2)
should satisfy ϕ1 + ϕ2 = σ.

Suppose now that the players have selected their threat strategies, pd for
Player I and qd for Player II. Then if agreement is not reached, Player I
receives pdAqTd and Player II receives pdBqTd . The resulting payoff vector,
(µd, νd) = (pdAqTd ,pdBqTd ) is in the cooperative region and is called the dis-
agreement point or threat point. Once the disagreement point is determined,
the players must agree on the point (u, v) on the line u + v = σ to be used
as the cooperative solution. Player I will accept no less than µd and Player
II will accept no less than νd since these can be achieved if no agreement is
reached. But once the disagreement point has been determined, the game
becomes symmetric. The players are arguing about which point on the line
interval from (µd, σ − µd) to (σ − νd, νd) to select as the cooperative solu-
tion. No other considerations with respect to the matrices A and B play any
further role. Therefore, the midpoint of the interval, namely

(ϕ1, ϕ2) =

(
σ + µd − νd

2
,
σ − µd + νd

2

)
is the natural compromise. Both players suffer equally if the agreement is
broken. Suppose Player I receives less than ϕ1. He may threat Player II by
saying that he will use his threat strategy pd. By doing so, Player I may
guarantee that he gets at least δ = v(A − B) more than Player II. This
ensures Player II will suffer more. Similarly, If Player II receives less than
ϕ2, she may ensure that Player I suffers more by using her threat strategy
qd.

Example 3.4.2. Find the threat strategies and the threat solution of the
game bimatrix

(A,B) =

(
(0, 0) (6, 2) (−1, 2)

(4,−1) (3, 6) (5, 5)

)
.
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Solution. There is a Nash equilibrium in the first row, second column, with
payoff vector (6, 2). The maximum total payoff is

σ = 5 + 5 = 10.

If they come to an agreement, Player I will select the second row, Player II
will select the third column and both players will receive a payoff of 5. They
must still decide on a side payment, if any. They consider the zero-sum game
with the threat matrix

T = A−B =

(
0 4 −3
5 −3 0

)
.

The first column is strictly dominated by the last. The threat strategies are
then easily determined to be{

pd = (0.3, 0.7)

qd = (0, 0.3, 0.7)

Now the threat differential is δ = v(A−B) = −9/10 and the threat solution
is

(ϕ1, ϕ2) =

(
10− 9

10

2
,
10 + 9

10

2

)
=

(
91

20
,
109

20

)
Example 3.4.3. Find the threat solution of the game bimatrix

(A,B) =

 (1, 5) (2, 2) (0, 1)
(4, 2) (1, 0) (2, 1)
(5, 0) (2, 3) (0, 0)

 .

Solution. There are two cooperative strategies giving total payoff σ = 6. The
threat matrix is

T = A−B =

 −4 0 −1
2 1 1
5 −1 0

 .

which has a saddle-point at the 2, 3-entry and the threat differential is δ =
v(T ) = 1. The threat strategies are{

pd = (0, 1, 0)

qd = (0, 0, 1)
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and the threat solution is

(ϕ1, ϕ2) =

(
6 + 1

2
,
6− 1

2

)
= (3.5, 2.5).

Exercise 3

1. Find all Nash equilibria of the following bimatrix games. For each of
the Nash equilibrium, find the payoff pair.

(a)

(
(1, 4) (5, 1)
(4, 2) (3, 3)

)
(b)

(
(5, 2) (2, 0)
(1, 1) (3, 4)

) (c)

(
(1, 5) (2, 3)
(5, 2) (4, 2)

)
(d)

(
(−1, 0) (2, 1)
(4, 3) (−3,−1)

)
2. Find all Nash equilibria of the following bimatirx games

(a)

(
(4, 1) (2, 3) (3, 4)
(3, 2) (5, 5) (1, 2)

)

(b)

(
(1, 0) (4,−1) (5, 1)
(3, 2) (1, 1) (2,−1)

)
(c)

 (4, 6) (0, 3) (2,−1)
(2, 4) (6, 5) (−1, 1)
(5, 0) (1, 2) (4, 3)


(d)

 (3, 2) (4, 0) (7, 9)
(2, 6) (8, 4) (3, 5)
(5, 4) (5, 3) (4, 1)


3. The Brouwer’s fixed-point theorem states that every continuous map
f : X → X has a fixed-point if X is homeomorphic to a closed unit ball.
Find a map f : X → X which does not have any fixed-point for each of
the following topological spaces X. (It follows that the following spaces
are not homeomorphic to a closed unit ball.)

(a) X is the punched closed unit disc D2 \ {0} = {(x, y) ∈ R2 : 0 <
x2 + y2 ≤ 1}

(b) X is the unit sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
(c) X is the open unit disc B2 = {(x, y) ∈ R2 : x2 + y2 < 1}

4. For each of the following bimatrices (A,B), find the values νA and
νBT of A and BT respectively, and the Nash bargaining solution using
(µ, ν) = (νA, νBT ) as the status quo point.
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(a)

(
(4,−4) (−1,−1)
(0, 1) (1, 0)

)
(b)

(
(3, 1) (1, 0)

(0,−1) (2, 3)

) (c)

(
(2, 2) (0, 1) (1,−1)
(4, 1) (−2, 1) (1, 3)

)
(d)

(
(6, 4) (0, 10) (4, 1)

(8,−2) (4, 1) (0, 1)

)
5. Two broadcasting companies, NTV and CTV, bid for the exclusive

broadcasting rights of an annual sports event. If both companies bid,
NTV will win the bidding with a profit of $20 (million) and CTV will
have no profit. If only NTV bids, there’ll be a profit of $50 (million).
If only CTV bids, there’ll be a profit of $40 (million). Find the Nash’s
solution to the bargaining problem.

6. Let R = {(u, v) : v ≥ 0 and u2 + v ≤ 4} ⊂ R2. Find the arbitration
pair A(R, (µ, ν)) using the following points as the status quo point
(µ, ν).

(a) (0, 0) (b) (0, 1)

7. Let R ⊂ R2 be a closed and bounded convex set, (µ, ν) ∈ R and
(α, β) = A(R, (µ, ν)) be the arbitration pair with α 6= µ. Suppose the
boundary ofR is given, locally at (α, β), by the graph of a differentiable
function f(x) with f(α) = β. Prove that f ′(α) is equal to the negative
of the slope of the line joining (µ, ν) and (α, β).

8. Suppose A is an n× n matrix such that the sum of entries in any row
of A is equal to a constant rn. Let (µ, ν) be the status quo point of
the bimatrix (A,AT ).

(a) Prove that there is a Nash equilibrium of (A,AT ) with (r, r) as
payoff pair.

(b) Prove that the arbitration payoff pair of the bimatrix (A,AT ) is

(α, β) = (m,m) where m is the maximum entry of
A+ AT

2
. (Here

in finding the arbitration payoff pair of bimatix (A,B), the status
quo point is taken to be (µ, ν) = (v(A), v(BT )) where v is the
value of a matrix.)

9. Find the threat strategies and the threat solutions of the following game
bimatrix.
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(a)

(
(3,−2) (2, 4)
(1, 0) (3,−1)

)

(b)

(
(5, 3) (1, 3)
(4, 4) (2, 1)

)
(c)

(
(6, 4) (2, 3) (4, 7)
(2, 6) (4, 2) (5, 4)

)

(d)

 (2, 8) (7, 5) (6, 3)
(0, 7) (4, 3) (5, 5)

(3,−1) (−2, 6) (2, 7)


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bargaining problem, 69
bargaining set, 68
basic form, 36
basic solution, 38
basic variable, 36
bimatrix game, 54
bounded problem, 30
Brouwer’s fixed-point theorem, 57

column player, 2
column value, 46
convex, 47
convex hull, 47
cooperative game

non-transferable utility, 65
transferable utility, 78

cooperative region, 67

disagreement point, 79
dominated column, 12
dominated row, 12
dual problem, 29

equilibrium pair, 55
expected payoff, 5

fair, 12
feasibility, 69
feasible vector, 30

game
bimatrix, 54
dating, 55, 62
fair, 12
modified rock-paper-scissors, 7

rock-paper-scissors, 4
zero sum, 2

independence of irrelevant alternatives,
70

independent variable, 36
individual rationality, 69
interchangeable, 64
invariant under linear transformation,

70

joint strategy, 66

lower envelope, 15

maximin, 3
maximin problem, 28
maximin strategy, 7, 46
minimax, 3
minimax problem, 29
minimax strategy, 7, 46
minimax theorem, 52

Nash bargaining axioms, 69
Nash bargaining solution, 70
Nash equilibrium, 55
Nash’s theorem, 57
normal form, 54

objective function, 29
optimal vector, 30

Pareto optimal, 68
Pareto optimality, 69
perfect information, 2
pivoting operation, 35
primal problem, 29
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principle of indifference, 22
prisoner dilemma, 55, 61
probability matrix, 66
probability vector, 5

row player, 2
row value, 46

saddle point, 2
safety level, 54
security level, 7, 54
simplex method, 34
slack variable, 34
solvable in the Nash sense, 64
status quo point, 68
strategic form, 2
strategy

joint, 66
maximin, 7, 46
minimax, 7, 46
mixed, 5
pure, 5

symmetry, 70

theorem
Brouwer’s fixed-point, 57
hyperplane separation, 48
minimax, 6, 52
Nash’s, 57
principle of indifference, 22

threat differential, 79
threat matrix, 79
threat point, 79
threat solution, 79
threat strategy, 79

value, 7
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