Math4230 Tutorial 9

1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Suppose x^* is a local minimizer of f, show that it is also a global minimizer.

2. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a strictly convex function. Suppose f has a global minimizer, show that it is unique.

3. Let $f : Y \to \mathbb{R}$ be a Lipschitz continuous function with constant L. Let X be a nonempty closed subset of Y, and c be a number such that $c > L$.
 (a) Show that if x^* minimizes f over X, then x^* minimizes
 $$f_c(x) = f(x) + c \inf_{\tau \in X} ||\tau - x||$$
 over Y.
 (b) Show that if x^* minimizes $f_c(x)$ over Y, then $x^* \in X$, and hence x^* minimizes f over X.

4. Consider the following problem
 $$\min x^2 + 1 \text{ subject to } (x - 2)(x - 4) \leq 0$$
 (a) Find the feasible set, optimal value and the optimal solution.
 (b) Write down the Lagrangian $L(x, \lambda)$. Find the dual function q.
 (c) Solve the dual problem. Does strong duality hold?

5. Consider the following problem
 $$\min \langle c, x \rangle, \text{ subject to } f(x) \leq 0$$
 with $c \neq 0$.
 Express the dual problem in terms of the conjugate function of f.