Math4230 Tutorial 6 Solution

1. (a) \(x - \frac{\langle a, x \rangle - b}{\|a\|} a \)

 (b) \(\max\{x, 0\} \)

2.
 \[
 \|P_C(x_1) - P_C(x_2)\|^2
 = (P_C(x_1) - x_2, P_C(x_1) - P_C(x_2)) + \langle x_2 - P_C(x_2), P_C(x_1) - P_C(x_2) \rangle
 \leq (P_C(x_1) - x_2, P_C(x_1) - P_C(x_2))
 = (P_C(x_1) - x_1, P_C(x_1) - P_C(x_2)) + \langle x_1 - x_2, P_C(x_1) - P_C(x_2) \rangle
 \leq (x_1 - x_2, P_C(x_1) - P_C(x_2))
 \]

3. Since \(C \) is closed and \(\bar{x} \notin C \), \(C \) and \(\bar{x} \) can be strictly separated by a hyperplane. Hence for some nonzero \(a \in \mathbb{R}^n \) we have,

 \(\langle a, x \rangle < \langle a, \bar{x} \rangle \), \(\forall x \in C \).

 Suppose \(\langle a, x' \rangle > 0 \) for some \(x' \in C \). Since \(C \) is a cone, \(\lambda x \in C \) \(\forall \lambda > 0 \).
 By choosing a large \(\lambda \), we get a contradiction, since \(\langle a, \lambda x' \rangle > \langle a, \bar{x} \rangle \).
 Hence \(\langle a, x \rangle \leq 0 \), \(\forall x \in C \).
 Since \(C \) is a closed cone, \(0 \in C \). We must have \(\langle a, \bar{x} \rangle > 0 \).

4. Since \(V \) is closed and \(\bar{x} \notin V \), \(V \) and \(\bar{x} \) can be strictly separated by a hyperplane. Hence for some nonzero \(a \in \mathbb{R}^n \) we have,

 \(\langle a, x \rangle < \langle a, \bar{x} \rangle \), \(\forall x \in V \).

 Suppose \(\langle a, x' \rangle \neq 0 \) for some \(x' \in V \). Since \(V \) is a subspace, \(\lambda x \in V \) for all \(\lambda \). We can choose \(\lambda \) such that \(\langle a, \lambda x' \rangle > \langle a, \bar{x} \rangle \). Hence, we get a contradiction. Since \(V \) is a subspace, \(0 \in V \). We must have \(\langle a, \bar{x} \rangle > 0 \).