1. \(\overline{\text{ri}(C)} \subset C \) since \(\text{ri}(C) \subset C \).

Conversely, suppose \(x \in C \).

Let \(x \in \text{ri}(C) \). Consider \(x_k = \frac{1}{k}x + (1 - \frac{1}{k})x \).

By the line segment property, each \(x_k \in \text{ri}(C) \). Also, \(x_k \to x \). Therefore, \(x \in \text{ri}(C) \).

2. We first prove that \(\text{ri}(C) = \text{ri}(\overline{C}) \). \(\text{ri}(C) \subset \text{ri}(\overline{C}) \) follows from the definition and the fact that \(\text{aff}(C) = \text{aff}(\overline{C}) \).(Try to show this)

Conversely, suppose \(x \in \text{ri}(\overline{C}) \). Suppose \(x \in \text{ri}(C) \). (which exists since \(\text{ri}(C) \) is nonempty)

We may assume \(x \neq z \). Then by Prolongation lemma, \(y = x + \gamma(x - z) \in \overline{C} \), for some \(\gamma > 0 \).

Then \(x = \frac{\gamma}{1+\gamma}x + \frac{1}{1+\gamma}y \). By Line Segment Property, \(x \in \text{ri}(C) \).

Now, since \(C_1 = C_2 \), \(\text{ri}(C_1) = \text{ri}(C_2) \). Hence, \(\text{ri}(C_1) = \text{ri}(C_2) \).

3. (a) \(C_1 = \{(x, y) \mid 0 \leq x \leq 1, \ y = 0\} \)

\(C_2 = \{(x, y) \mid 0 \leq x \leq 1, \ 0 \leq y \leq 1\} \)

(b) Let \(x \in \text{ri}(C_1) \). Then there exists \(\epsilon > 0 \) such that \(B(x, \epsilon) \cap \text{aff}(C_1) \subset C_1 \).

But \(\text{aff}(C_1) = \text{aff}(C_2) \). So \(B(x, \epsilon) \cap \text{aff}(C_2) \subset C_1 \subset C_2 \).

Hence \(x \in \text{ri}(C_2) \).

4. Let \(x^* \in X^* \cap \text{ri}(X) \). Let \(x \in X \).

By Prolongation lemma, \(y = x^* + \gamma(x^* - x) \in X \).

So \(x^* = \frac{\gamma}{1+\gamma}x + \frac{1}{1+\gamma}y \). Since \(f \) is concave, we have

\[
f(x^*) \geq \frac{\gamma}{1+\gamma}f(x) + \frac{1}{1+\gamma}f(y) \geq \frac{\gamma}{1+\gamma}f(x^*) + \frac{1}{1+\gamma}f(x^*) = f(x^*)
\]

since \(f(x) \geq f(x^*) \), \(f(y) \geq f(x^*) \).

So we must have equality. In particular, \(f(x) = f(x^*) \). This holds for any \(x \in X \). Hence, \(f \) must be constant.