Math4230 Tutorial 1

- 1. Let $C \subset \mathbb{R}^n$. C is a cone if $\lambda x \in C$ whenever $\lambda \ge 0$ and $x \in C$. Show the following are equivalent:
 - (a) C is a convex cone.
 - (b) $x + y \in C$, whenever $x, y \in C$, and $\lambda x \in C$ whenever $\lambda \ge 0$ and $x \in C$.
- 2. Show that the interior and closure of a convex set is also convex.
- 3. Show that the image and inverse image of a convex set under a linear transformation is also a convex set.

-

4. (a) A perspective function is a function $f : \mathbb{R}^{n+1} \to \mathbb{R}^n$ such that

$$f(x,t) = \begin{bmatrix} x_1/t \\ x_2/t \\ \vdots \\ x_n/t \end{bmatrix}$$

where $x \in \mathbb{R}^n$ and t > 0.

Show that the f(C) is convex if C is convex and f is a perspective function.

- (b) Show that $f^{-1}(C)$ is convex if C is convex and f is a perspective function.
- (c) A linear fractional function is a function $h:\mathbb{R}^n\to\mathbb{R}^m$ of the form

$$h(x) = \frac{Ax+b}{c^T x+d}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$. Show that h(C) is convex if C is convex and h is a linear fractional function.