On subdifferential calculus *

Tieyong Zeng
zeng@math.cuhk.edu.hk
Feb, 2020
Definition 2.30 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function and let $\bar{x} \in \text{dom } f$. An element $v \in \mathbb{R}^n$ is called a subgradient of f at \bar{x} if

$$\langle v, x - \bar{x} \rangle \leq f(x) - f(\bar{x}) \text{ for all } x \in \mathbb{R}^n. \quad (2.13)$$

The collection of all the subgradients of f at \bar{x} is called the subdifferential of the function at this point and is denoted by $\partial f(\bar{x})$.
Subdifferential

the subdifferential \(\partial f(x) \) of \(f \) at \(x \) is the set of all subgradients:

\[
\partial f(x) = \{ g \mid g^T (y - x) \leq f(y) - f(x), \ \forall y \in \text{dom } f \}
\]

Properties

- \(\partial f(x) \) is a closed convex set (possibly empty)

 this follows from the definition: \(\partial f(x) \) is an intersection of halfspaces

- if \(x \in \text{int } \text{dom } f \) then \(\partial f(x) \) is nonempty and bounded

 proof on next two pages
Proof: we show that $\partial f(x)$ is nonempty when $x \in \text{int dom } f$

- $(x, f(x))$ is in the boundary of the convex set $\text{epi } f$

- therefore there exists a supporting hyperplane to $\text{epi } f$ at $(x, f(x))$:

 $$\exists (a, b) \neq 0, \quad \left[\begin{array}{c} a \\ b \end{array}\right]^T \left(\left[\begin{array}{c} y \\ t \end{array}\right] - \left[\begin{array}{c} x \\ f(x) \end{array}\right]\right) \leq 0 \quad \forall (y, t) \in \text{epi } f$$

- $b > 0$ gives a contradiction as $t \to \infty$

- $b = 0$ gives a contradiction for $y = x + \epsilon a$ with small $\epsilon > 0$

- therefore $b < 0$ and $g = \frac{1}{|b|} a$ is a subgradient of f at x
Proof: \(\partial f(x) \) is bounded when \(x \in \text{int dom } f \)

- for small \(r > 0 \), define a set of \(2n \) points

\[
B = \{ x \pm r e_k \mid k = 1, \ldots, n \} \subset \text{dom } f
\]

and define \(M = \max_{y \in B} f(y) < \infty \)

- for every \(g \in \partial f(x) \), there is a point \(y \in B \) with

\[
r \| g \|_\infty = g^T (y - x)
\]

(choose an index \(k \) with \(|g_k| = \| g \|_\infty \), and take \(y = x + r \text{ sign}(g_k)e_k \))

- since \(g \) is a subgradient, this implies that

\[
f(x) + r \| g \|_\infty = f(x) + g^T (y - x) \leq f(y) \leq M
\]

- we conclude that \(\partial f(x) \) is bounded:

\[
\| g \|_\infty \leq \frac{M - f(x)}{r} \quad \text{for all } g \in \partial f(x)
\]
Definition 2.34 We say that $f : \mathbb{R}^n \to \mathbb{R}$ is (Fréchet) differentiable at $\bar{x} \in \text{int}(\text{dom } f)$ if there exists an element $v \in \mathbb{R}^n$ such that

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x}) - \langle v, x - \bar{x} \rangle}{\|x - \bar{x}\|} = 0.$$

In this case the element v is uniquely defined and is denoted by $\nabla f(\bar{x}) := v.$
Proposition 2.35 Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and let $\bar{x} \in \text{dom } f$. Then f attains its local/global minimum at \bar{x} if and only if $0 \in \partial f(\bar{x})$.

Proof. Suppose that f attains its global minimum at \bar{x}. Then

$$f(\bar{x}) \leq f(x) \quad \text{for all } x \in \mathbb{R}^n,$$

which can be rewritten as

$$0 = \langle 0, x - \bar{x} \rangle \leq f(x) - f(\bar{x}) \quad \text{for all } x \in \mathbb{R}^n.$$

The definition of the subdifferential shows that this is equivalent to $0 \in \partial f(\bar{x})$. \qed
Now we show that the subdifferential (2.13) is indeed a singleton for differentiable functions reducing to the classical derivative/gradient at the reference point and clarifying the notion of differentiability in the case of convex functions.

Proposition 2.36 Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable at $\bar{x} \in \text{int(dom } f \text{)}$. Then we have

$$\partial f(\bar{x}) = \{ \nabla f(\bar{x}) \}$$

and

$$\langle \nabla f(\bar{x}), x - \bar{x} \rangle \leq f(x) - f(\bar{x}) \text{ for all } x \in \mathbb{R}^n.$$

(2.17)
Proposition 2.36 Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex and differentiable at \(\bar{x} \in \text{int}(\text{dom } f) \). Then we have \(\partial f(\bar{x}) = \{\nabla f(\bar{x})\} \) and
\[
\langle \nabla f(\bar{x}), x - \bar{x} \rangle \leq f(x) - f(\bar{x}) \quad \text{for all } x \in \mathbb{R}^n. \tag{2.17}
\]

Proof. It follows from the differentiability of \(f \) at \(\bar{x} \) that for any \(\epsilon > 0 \) there is \(\delta > 0 \) with
\[
-\epsilon \|x - \bar{x}\| \leq f(x) - f(\bar{x}) - \langle \nabla f(\bar{x}), x - \bar{x} \rangle \leq \epsilon \|x - \bar{x}\| \quad \text{whenever } \|x - \bar{x}\| < \delta. \tag{2.18}
\]

Consider further the convex function
\[
\varphi(x) := f(x) - f(\bar{x}) - \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \epsilon \|x - \bar{x}\|, \quad x \in \mathbb{R}^n.
\]
and observe that \(\varphi(x) \geq \varphi(\bar{x}) = 0 \) for all \(x \in \text{IB}(\bar{x}; \delta) \). The convexity of \(\varphi \) ensures that \(\varphi(x) \geq \varphi(\bar{x}) \) for all \(x \in \mathbb{R}^n \). Thus
\[
\langle \nabla f(\bar{x}), x - \bar{x} \rangle \leq f(x) - f(\bar{x}) + \epsilon \|x - \bar{x}\| \quad \text{whenever } x \in \mathbb{R}^n,
\]
which yields (2.17) by letting \(\epsilon \downarrow 0 \).

It follows from (2.17) that \(\nabla f(\bar{x}) \in \partial f(\bar{x}) \). Picking now \(v \in \partial f(\bar{x}) \), we get
\[
\langle v, x - \bar{x} \rangle \leq f(x) - f(\bar{x}).
\]

Then the second part of (2.18) gives us that
\[
\langle v - \nabla f(\bar{x}), x - \bar{x} \rangle \leq \epsilon \|x - \bar{x}\| \quad \text{whenever } \|x - \bar{x}\| < \delta.
\]
Finally, we observe that \(\|v - \nabla f(\bar{x})\| \leq \epsilon \), which yields \(v = \nabla f(\bar{x}) \) since \(\epsilon > 0 \) was chosen arbitrarily. Thus \(\partial f(\bar{x}) = \{\nabla f(\bar{x})\} \).
\[\square\]
Example 2.38 Let \(p(x) := \|x\| \) be the Euclidean norm function on \(\mathbb{R}^n \). Then we have

\[
\partial p(x) = \begin{cases}
IB & \text{if } x = 0, \\
\left\{ \frac{x}{\|x\|} \right\} & \text{otherwise}.
\end{cases}
\]

To verify this, observe first that the Euclidean norm function \(p \) is differentiable at any nonzero point with \(\nabla p(x) = \frac{x}{\|x\|} \) as \(x \neq 0 \). It remains to calculate its subdifferential at \(x = 0 \). To proceed by definition (2.13), we have that \(v \in \partial p(0) \) if and only if

\[
\langle v, x \rangle = \langle v, x - 0 \rangle \leq p(x) - p(0) = \|x\| \quad \text{for all } x \in \mathbb{R}^n.
\]

Letting \(x = v \) gives us \(\langle v, v \rangle \leq \|v\| \), which implies that \(\|v\| \leq 1 \), i.e., \(v \in IB \). Now take \(v \in IB \) and deduce from the Cauchy–Schwarz inequality that

\[
\langle v, x - 0 \rangle = \langle v, x \rangle \leq \|v\| \cdot \|x\| \leq \|x\| = p(x) - p(0) \quad \text{for all } x \in \mathbb{R}^n
\]

and thus \(v \in \partial p(0) \), which shows that \(\partial p(0) = IB \).
Theorem 2.40 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function on its domain D, which is an open convex set. Then f is convex if and only if

$$\langle \nabla f(u), x - u \rangle \leq f(x) - f(u) \quad \text{for all } x, u \in D. \quad (2.21)$$

Proof. The “only if” part follows from Proposition 2.36. To justify the converse, suppose that (2.21) holds and then fix any $x_1, x_2 \in D$ and $t \in (0, 1)$. Denoting $x_t := tx_1 + (1-t)x_2$, we have $x_t \in D$ by the convexity of D. Then

$$\langle \nabla f(x_t), x_1 - x_t \rangle \leq f(x_1) - f(x_t), \quad \langle \nabla f(x_t), x_2 - x_t \rangle \leq f(x_2) - f(x_t).$$

It follows furthermore that

$$t\langle \nabla f(x_t), x_1 - x_t \rangle \leq tf(x_1) - tf(x_t) \quad \text{and}$$

$$(1-t)\langle \nabla f(x_t), x_2 - x_t \rangle \leq (1-t)f(x_2) - (1-t)f(x_t).$$

Summing up these inequalities, we arrive at

$$0 \leq tf(x_1) + (1-t)f(x_2) - f(x_t),$$

which ensures that $f(x_t) \leq tf(x_1) + (1-t)f(x_2)$, and so verifies the convexity of f. \qed
Moreau-Rockafellar theorem

Corollary 2.45 Let $f_i : \mathbb{R}^n \to \overline{\mathbb{R}}$ for $i = 1, 2$ be convex functions such that there exists $u \in \text{dom } f_1 \cap \text{dom } f_2$ for which f_1 is continuous at u or f_2 is continuous at u. Then

$$\partial(f_1 + f_2)(x) = \partial f_1(x) + \partial f_2(x)$$

(2.28)

whenever $x \in \text{dom } f_1 \cap \text{dom } f_2$. Consequently, if both functions f_i are finite-valued on \mathbb{R}^n, then the sum rule (2.28) holds for all $x \in \mathbb{R}^n$.
Theorem 2.9 (Moreau-Rockafellar) Let \(f, g : \mathbb{R}^n \to (-\infty, +\infty] \) be convex functions. Then for every \(x_0 \in \mathbb{R}^n \)

\[
\partial f(x_0) + \partial g(x_0) \subset \partial (f + g)(x_0).
\]

Moreover, suppose that \(\text{int dom } f \cap \text{dom } g \neq \emptyset \). Then for every \(x_0 \in \mathbb{R}^n \) also

\[
\partial (f + g)(x_0) \subset \partial f(x_0) + \partial g(x_0).
\]
Proof. The proof of the first part is elementary: Let $\xi_1 \in \partial f(x_0)$ and $\xi_2 \in \partial g(x_0)$. Then for all $x \in \mathbb{R}^n$

\[
f(x) \geq f(x_0) + \xi_1^t(x - x_0), \quad g(x) \geq g(x_0) + \xi_2^t(x - x_0),
\]

so addition gives $f(x) + g(x) \geq f(x_0) + g(x_0) + (\xi_1 + \xi_2)^t(x - x_0)$. Hence $\xi_1 + \xi_2 \in \partial (f + g)(x_0)$.

To prove the second part, let $\xi \in \partial (f + g)(x_0)$. First, observe that $f(x_0) = +\infty$ implies $(f + g)(x_0) = +\infty$, whence $f + g \equiv +\infty$, which is impossible by $\xi \in \partial (f + g)(x_0)$. Likewise, $g(x_0) = +\infty$ is impossible. Hence, from now on we know that both $f(x_0)$ and $g(x_0)$ belong to \mathbb{R}. We form the following two sets in \mathbb{R}^{n+1}.

\[
\Lambda_f := \{(x - x_0, y) \in \mathbb{R}^n \times \mathbb{R} : y > f(x) - f(x_0) - \xi^t(x - x_0)\}
\]

\[
\Lambda_g := \{(x - x_0, y) : -y \geq g(x) - g(x_0)\}.
\]
\[\Lambda_f := \{(x - x_0, y) \in \mathbb{R}^n \times \mathbb{R} : y > f(x) - f(x_0) - \xi^t(x - x_0)\} \]

\[\Lambda_g := \{(x - x_0, y) : -y \geq g(x) - g(x_0)\}. \]

Observe that both sets are nonempty and convex (see Exercise 2.8), and that \(\Lambda_f \cap \Lambda_g = \emptyset \) (the latter follows from \(\xi \in \partial(f + g)(x_0) \)). Hence, by the set-set-separation Theorem A.4, there exists \((\xi_0, \mu) \in \mathbb{R}^{n+1} \) and \(\alpha \in \mathbb{R} \), \((\xi_0, \mu) \neq (0, 0)\), such that

\[\xi_0^t(x - x_0) + \mu y \leq \alpha \text{ for all } (x, y) \text{ with } y > f(x) - f(x_0) - \xi^t(x - x_0), \]

\[\xi_0^t(x - x_0) + \mu y \geq \alpha \text{ for all } (x, y) \text{ with } -y \geq g(x) - g(x_0). \]

By \((0, 0) \in \Lambda_g\) we get \(\alpha \leq 0 \). But also \((0, \epsilon) \in \Lambda_f\) for every \(\epsilon > 0 \), and this gives \(\mu \epsilon \leq \alpha \), so \(\mu \leq 0 \) (take \(\epsilon = 1 \)). In the limit, for \(\epsilon \to 0 \), we find \(\alpha \geq 0 \). Hence \(\alpha = 0 \) and \(\mu \leq 0 \). We now claim that \(\mu = 0 \) is impossible. Indeed, if one had \(\mu = 0 \), then the first of the above two inequalities would give

\[\xi_0^t(x - x_0) \leq 0 \text{ for all } (x, y) \text{ with } y > f(x) - f(x_0) - \xi^t(x - x_0), \]
which is equivalent to
\[\xi_t^0(x - x_0) \leq 0 \text{ for all } x \in \text{dom } f \]
(simply note that when \(f(x) < +\infty \) one can always achieve \(y > f(x) - f(x_0) - \xi_t^t(x - x_0) \) by choosing \(y \) sufficiently large). Likewise, the second inequality would give
\[\xi_t^0(x - x_0) \geq 0 \text{ for all } x \in \text{dom } g. \]
In particular, for \(\bar{x} \) as above this would imply \(\xi_t^0(\bar{x} - x_0) = 0 \). But since \(\bar{x} \) lies in the interior of dom \(f \) (so for some \(\delta > 0 \) the ball \(N_\delta(\bar{x}) \) belongs to dom \(f \)), the preceding would imply
\[\xi_t^0 u = \xi_t^0(\bar{x} + u - x_0) \leq 0 \text{ for all } u \in N_\delta(0). \]
Clearly, this would give \(\xi_0 = 0 \) (take \(u := \delta \xi_0/2 \)), which would be in contradiction to \((\xi_0, \mu) \neq (0, 0)\). Hence, we conclude \(\mu < 0 \). Dividing the separation inequalities by \(-\mu\) and setting \(\tilde{\xi}_0 := -\xi_0/\mu \), this results in
\[\tilde{\xi}_0^t(x - x_0) \leq y \text{ for all } (x, y) \text{ with } y > f(x) - f(x_0) - \xi_t^t(x - x_0), \]
\[\tilde{\xi}_0^t(x - x_0) \geq y \text{ for all } (x, y) \text{ with } -y \geq g(x) - g(x_0). \]
The last inequality gives \(-\tilde{\xi}_0 \in \partial g(x_0) \) (set \(y := g(x_0) - g(x) \)) and the one but last inequality gives \(\xi + \tilde{\xi}_0 \in \partial f(x_0) \) (take \(y := f(x) - f(x_0) - \xi_t^t(x - x_0) + \epsilon \) and let \(\epsilon \downarrow 0 \)).
Since \(\xi = (\xi + \tilde{\xi}_0) - \tilde{\xi}_0 \), this finishes the proof. QED
As a precursor to the Karush-Kuhn-Tucker theorem, we have now the following application of the Moreau-Rockafellar theorem.

Theorem 2.10 Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a convex function and let \(S \subset \mathbb{R}^n \) be a nonempty convex set. Consider the optimization problem

\[
(P) \quad \inf_{x \in S} f(x).
\]

Then \(\bar{x} \in S \) is an optimal solution of \((P)\) if and only if there exists a subgradient \(\bar{\xi} \in \partial f(\bar{x}) \) such that

\[
\bar{\xi}^t (x - \bar{x}) \geq 0 \quad \text{for all } x \in S. \tag{1}
\]
Proof. Recall from Definition 2.3 that \(\chi_S \) is the indicator function of \(S \). Now let \(\bar{x} \in S \) be arbitrary. Then the following is trivial: \(\bar{x} \) is an optimal solution of \((P) \) if and only if

\[
0 \in \partial(f + \chi_S)(\bar{x}).
\]

By the Moreau-Rockafellar Theorem 2.9, we have

\[
\partial(f + \chi_S)(\bar{x}) = \partial f(\bar{x}) + \partial \chi_S(\bar{x}).
\]

To see that its conditions hold, observe that \(\text{dom } f = \mathbb{R}^n \) and \(\text{dom } \chi_S = S \). So it follows that \(\bar{x} \) is an optimal solution of \((P) \) if and only if \(0 \in \partial f(\bar{x}) + \partial \chi_S(\bar{x}) \). By the definition of the sum of two sets this means that \(\bar{x} \) is an optimal solution of \((P) \) if and only if \(0 = \bar{\xi} + \bar{\xi}' \) for some \(\bar{\xi} \in \partial f(\bar{x}) \) and \(\bar{\xi}' \in \partial \chi_S(\bar{x}) \). Of course, the former means \(\bar{\xi}' = -\bar{\xi} \), so \(-\bar{\xi} \in \partial \chi_S(\bar{x}) \), which is equivalent to

\[
\chi_S(x) \geq \chi_S(\bar{x}) + (-\bar{\xi})^t(x - \bar{x}) \text{ for all } x \in \mathbb{R}^n,
\]

i.e., to (1). QED
Definition 2.13 The directional derivative of a convex function $f : \mathbb{R}^n \to (-\infty, +\infty]$ at the point $x_0 \in \text{dom} f$ in the direction $d \in \mathbb{R}^n$ is defined as

$$f'(x_0; d) := \lim_{\lambda \downarrow 0} \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda}.$$

The above limit is a well-defined number in $[-\infty, +\infty]$. This follows from the following proposition (why?), which shows that the difference quotients of a convex functions possess a monotonicity property:
Proposition 2.14 Let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be a convex function and let x_0 be a point in $\text{dom} f$. Then for every direction $d \in \mathbb{R}^n$ and every $\lambda_1, \lambda_2 \in \mathbb{R}$ such that $\lambda_2 > \lambda_1 > 0$ we have

$$\frac{f(x_0 + \lambda_1 d) - f(x_0)}{\lambda_1} \leq \frac{f(x_0 + \lambda_2 d) - f(x_0)}{\lambda_2}$$

Proof. Note that

$$x_0 + \lambda_1 d = \frac{\lambda_1}{\lambda_2} (x_0 + \lambda_2 d) + (1 - \frac{\lambda_1}{\lambda_2}) x_0.$$

So by convexity of f

$$f(x_0 + \lambda_1 d) \leq \frac{\lambda_1}{\lambda_2} f(x_0 + \lambda_2 d) + (1 - \frac{\lambda_1}{\lambda_2}) f(x_0).$$

Simple algebra shows that this is equivalent to the desired inequality. QED
Theorem 2.15 Let \(f : \mathbb{R}^n \to (-\infty, +\infty] \) be a convex function and let \(x_0 \) be a point in \(\text{int} \, \text{dom} \, f \). Then

\[
f'(x_0; d) = \sup_{\xi \in \partial f(x_0)} \xi^t d \text{ for every } d \in \mathbb{R}^n.
\]
Proof of Theorem 2.15. By Proposition 2.14

\[q(d) := f'(x_0; d) := \lim_{\lambda \downarrow 0} \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda} = \inf_{\lambda > 0} \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda}. \]

Since the pointwise limit of a sequence of convex functions is convex, it follows that \(q : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex (by the infimum expression for \(q(d) \) the fact that \(x_0 \in \text{int dom } f \) implies automatically \(q(d) < +\infty \) for every \(d \); also, \(q(d) > -\infty \) for every \(d \), because of the nonemptiness part of Lemma 2.16). Hence, \(q \) is continuous at every point \(d \in \mathbb{R}^n \) (apply the continuity part of Lemma 2.16). So by the Fenchel-Moreau theorem (Theorem B.5 in the Appendix) we have for every \(d \)

\[q(d) = q^{**}(d) := \sup_{\xi \in \mathbb{R}^n} [d^t \xi - q^*(\xi)]. \]

Let us calculate \(q^* \). For any \(\xi \in \mathbb{R}^n \) we have

\[q^*(\xi) := \sup_{d \in \mathbb{R}^n} [\xi^t d - q(d)] = \sup_{d, \lambda > 0} [\xi^t d - \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda}] = \sup_{\lambda > 0} \sup_{d} [\xi^t d - \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda}]. \]
by the above infimum expression for \(q(d) \). Fix \(\lambda > 0 \); then \(z := x_0 + \lambda d \) runs through all of \(\mathbb{R}^n \) as \(d \) runs through \(\mathbb{R}^n \). Hence

\[
\sup_d \left[\xi^t d - \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda} \right] = \frac{f(x_0) - \xi^t x_0 + \sup_z [\xi^t z - f(z)]}{\lambda}.
\]

Clearly, this gives

\[
q^*(\xi) = \sup_{\lambda > 0} \frac{f(x_0) - \xi^t x_0 + f^*(\xi)}{\lambda} = \begin{cases}
0 & \text{if } \xi \in \partial f(x_0) \\
+\infty & \text{otherwise}
\end{cases}
\]

where we use Proposition B.4(v). Observe that in terms of the indicator function of the subdifferential this can be rewritten as \(q^* = \chi_{\partial f(x_0)} \). Now that \(q^* \) has been calculated, we conclude from the above that for every \(d \in \mathbb{R}^n \)

\[
f'(x_0; d) = q(d) = q^{**}(d) = \chi_{\partial f(x_0)}^*(d) = \sup_{\xi \in \partial f(x_0)} \xi^t d,
\]

which proves the result. QED
Proposition 2.54 Let \(f_i: \mathbb{R}^n \to \mathbb{R}, \ i = 1, \ldots, m, \) be convex functions. Take any point \(\bar{x} \in \bigcap_{i=1}^{m} \text{dom } f_i \) and assume that each \(f_i \) is continuous at \(\bar{x} \). Then we have the maximum rule

\[
\partial (\max f_i)(\bar{x}) = \text{co} \bigcup_{i \in \mathcal{I}(\bar{x})} \partial f_i(\bar{x}).
\]
Theorem 2.17 (Dubovitskii-Milyutin) Let $f_1, \ldots, f_m : \mathbb{R}^n \to (-\infty, +\infty]$ be convex functions and let x_0 be a point in $\cap_{i=1}^m \text{int dom } f_i$. Let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be given by

$$f(x) := \max_{1 \leq i \leq m} f_i(x)$$

and let $I(x_0)$ be the (nonempty) set of all $i \in \{1, \cdots, m\}$ for which $f_i(x_0) = f(x_0)$. Then

$$\partial f(x_0) = \text{co } \bigcup_{i \in I(x_0)} \partial f_i(x_0).$$
Proof. For our convenience we write \(I := I(x_0) \). To begin with, observe that \(\xi \in \partial f_i(x_0) \) easily implies \(\xi \in \partial f(x_0) \) for each \(i \in I \). Since \(\partial f(x_0) \) is evidently convex, the inclusion ”\(\supset \)” follows with ease. To prove the opposite inclusion, let \(\xi_0 \) be arbitrary in \(\partial f(x_0) \). If \(\xi_0 \) were not to belong to the compact set \(\bigcup_{i \in I} \partial f_i(x_0) \), then we could separate strictly (note that each set \(\partial f_i(x_0) \) is both closed and compact (exercise)): by Theorem A.2 there would exist \(d \in \mathbb{R}^n \) and \(\alpha \in \mathbb{R} \) such that

\[
\xi_0^t d > \alpha \geq \max_{i \in I} \sup_{\xi \in \partial f_i(x_0)} \xi^t d = \max_{i \in I} f_i^t(x_0; d),
\]

where the final identity follows from Theorem 2.15. But now observe that

\[
f_i^t(x_0; d) := \lim_{\lambda \downarrow 0} \max_{i \in I} \frac{f_i(x_0 + \lambda d) - f_i(x_0)}{\lambda} = \max_{i \in I} \lim_{\lambda \downarrow 0} \frac{f_i(x_0 + \lambda d) - f_i(x_0)}{\lambda} = \max_{i \in I} f_i^t(x_0; d),
\]

so the above gives \(\xi_0^t d > f^t(x_0; d) \). On the other hand, by \(\xi_0 \in \partial f(x_0) \) it follows that \(f(x_0 + \lambda d) \geq f(x_0) + \lambda \xi_0^t d \) for every \(\lambda > 0 \), whence \(f^t(x_0; d) \geq \xi_0^t d \). We thus have arrived at a contradiction. So the inclusion ”\(\subset \)” must hold as well. QED
Directional derivative

Definition (for general f): the directional derivative of f at x in the direction y is

$$f'(x; y) = \lim_{\alpha \to 0} \frac{f(x + \alpha y) - f(x)}{\alpha}$$

$$= \lim_{t \to \infty} \left(t(f(x + \frac{1}{t} y) - tf(x) \right)$$

(if the limit exists)

- $f'(x; y)$ is the right derivative of $g(\alpha) = f(x + \alpha y)$ at $\alpha = 0$
- $f'(x; y)$ is homogeneous in y:

$$f'(x; \lambda y) = \lambda f'(x; y) \text{ for } \lambda \geq 0$$
Directional derivative of a convex function

Equivalent definition (for convex f): replace \lim with \inf

$$f'(x; y) = \inf_{\alpha > 0} \frac{f(x + \alpha y) - f(x)}{\alpha}$$

$$= \inf_{t > 0} \left(t f(x + \frac{1}{t} y) - tf(x) \right)$$

Proof

- the function $h(y) = f(x + y) - f(x)$ is convex in y, with $h(0) = 0$
- its perspective $th(y/t)$ is nonincreasing in t (ECE236B ex. A2.5); hence

$$f'(x; y) = \lim_{t \to \infty} th(y/t) = \inf_{t > 0} th(y/t)$$
Properties

consequences of the expressions (for convex f)

$$f'(x; y) = \inf_{\alpha > 0} \frac{f(x + \alpha y) - f(x)}{\alpha}$$

$$= \inf_{t > 0} \left(tf(x + \frac{1}{t} y) - tf(x) \right)$$

- $f'(x; y)$ is convex in y (partial minimization of a convex function in y, t)
- $f'(x; y)$ defines a lower bound on f in the direction y:

$$f(x + \alpha y) \geq f(x) + \alpha f'(x; y) \quad \text{for all } \alpha \geq 0$$
Directional derivative and subgradients

for convex f and $x \in \text{int dom } f$

$$f'(x; y) = \sup_{g \in \partial f(x)} g^T y$$

$$\hat{f}(x, y) = g^T y$$

$f'(x; y)$ is support function of $\partial f(x)$

- generalizes $f''(x; y) = \nabla f(x)^T y$ for differentiable functions
- implies that $f'(x; y)$ exists for all $x \in \text{int dom } f$, all y (see page 2.4)
Proof: if $g \in \partial f(x)$ then from page 2.29

$$f'(x; y) \geq \inf_{\alpha > 0} \frac{f(x) + \alpha g^T y - f(x)}{\alpha} = g^T y$$

It remains to show that $f'(x; y) = g^T y$ for at least one $g \in \partial f(x)$

- $f'(x; y)$ is convex in y with domain \mathbb{R}^n, hence subdifferentiable at all y
- let \hat{g} be a subgradient of $f'(x; y)$ at y: then for all $v, \lambda \geq 0$,
 $$\lambda f'(x; v) = f'(x; \lambda v) \geq f'(x; y) + \hat{g}^T (\lambda v - y)$$
- taking $\lambda \to \infty$ shows that $f'(x; v) \geq \hat{g}^T v$; from the lower bound on page 2.30,
 $$f(x + v) \geq f(x) + f'(x; v) \geq f(x) + \hat{g}^T v \quad \text{for all } v$$
 hence $\hat{g} \in \partial f(x)$
- taking $\lambda = 0$ we see that $f'(x; y) \leq \hat{g}^T y$