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CHAPTER 1

Convex Sets and Functions

This chapter presents definitions, examples, and basic properties of convex sets and functions in
the Euclidean space R” and also contains some related material.

1.1 PRELIMINARIES

We start with reviewing classical notions and properties of the Euclidean space R”. The proofs
of the results presented in this section can be found in standard books on advanced calculus and
linear algebra.

Let us denote by R” the set of all n—tuples of real numbers x = (x1,...,x,). Then R” is
a linear space with the following operations:

1o x) + O1s ooy = (1 + Y10 X+ Yn),s
Axy, .o xp) = (Axq, ..., AXxy),

where (x1,...,x3),(V1,...,yn) € R” and A € R. The zero element of R” and the number zero
of R are often denoted by the same notation 0 if no confusion arises.

For any x = (x1,...,x,) € R", we identify it with the column vector x = [xq,..., xa]7,
where the symbol “T"” stands for wvector transposition. Given x = (x1,...,x,) € R” and y =
(V1. - .., yn) € R", the inner product of x and y is defined by

n
(x,y):= Zx,-yi.
i=1
'The following proposition lists some important properties of the inner product in R”.

Proposition1.1  Forx,y,z € R" and A € R, we have:

() (x,x) =0, and (x, x) = 0 if and only if x = 0.
(i) (x, y) = (¥, x).

(iii) (Ax, y) = A(x, y).

() (x,y +z) = (x, ) + (x,2).

'The Euclidean norm of x = (x1,...,x,) € R” is defined by

x|l == \/x3+ ...+ x2.
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It follows directly from the definition that ||x| = /(x, x).

Proposition1.2  Foranyx,y € R" and A € R, we have:

@ [|x|| = 0, and || x|| = 0 if and only if x = 0.

@) [Ax] = [A] - [lx]l.

(i) [|x + y|| < x|l + |y || (¢he triangle inequality).

@) [(x, »)| < lIx|l - |yl (zhe Cauchy-Schwarz inequality).

Using the Euclidean norm allows us to introduce the balls in R”, which can be used to
define other topological notions in R”.

Definition 1.3  7he CLOSED BALL centered at X with radiusr > 0 and the CLOSED UNIT BALL oﬂR"
are defined, respectively, by

B(%;r):={x eR"||x—%| <r} and IB:={x e R"| x| < 1}.
It is easy to see that IB = [B(0; 1) and IB(X;r) = X + rIB.
Definition 1.4  Ler 2 C R". Then X is an INTERIOR POINT of §2 if there is § > O such that
IB(:8) C 2.

The set of all interior points of §2 is denoted by int §2. Moreover, §2 is said to be OPEN if every point of

§2 is its interior point.

We get that §2 is open if and only if for every X € §2 there is § > 0 such that /B(X;4) C £2.
It is obvious that the empty set @ and the whole space R" are open. Furthermore, any open ball
B(x;r) :={x € R"| |lx — X|| < r} centered at X with radius r is open.

Definition 1.5 A set 2 C R" is CLOSED if its complement Q¢ = R" \§2 is open in R".
It follows that the empty set, the whole space, and any ball IB(x;r) are closed in R".

Proposition 1.6 (i) Zhe union of any collection of open sets in R" is open.

(ii) The intersection of any finite collection of open sets in R" is open.
(iii) Zhe intersection of any collection of closed sets in R" is closed.
(iv) The union of any finite collection of closed sets in R" is closed.

Definition 1.7 Lez {xy} be a sequence in R". We say that {x } CONVERGES fo X if
lxx — X|| = 0 ask — oco. In this case we write

lim x; = X.
k—o00
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This notion allows us to define the following important topological concepts for sets.

Definition 1.8 Lez 2 be a nonempty subset of R". Then:

(i) 7he CLOSURE of 2, denoted by Q2 or cl 2, is the collection of limits of all convergent sequences be-
longing to §2.
(ii) 7he BOUNDARY of §2, denoted by bd $2, is the set 2\ int 2.

We can see that the closure of §2 is the intersection of all closed sets containing £2 and that
the interior of §2 is the union of all open sets contained in £2. It follows from the definition that
% € 2 ifand only if for any § > 0 we have IB(X;§) N 2 # @. Furthermore, X € bd £ if and only
if for any § > 0 the closed ball IB(X; £2) intersects both sets §2 and its complement £2¢.

Definition 1.9 Lez {xi} be a sequence in R" and let {k¢} be a strictly increasing sequence of positive
integers. Then the new sequence {Xy, } is called a SUBSEQUENCE of {xy }.

We say that a set §2 is bounded if it is contained in a ball centered at the origin with some
radius r > 0, i.e., £2 C IB(0;r). Thus a sequence {xi} is bounded if there is » > 0 with

|xell <7 forall k e N.

The following important result is known as the Bo/zano-Weierstrass theorem.

Theorem 1.10  Any bounded sequence in R" contains a convergent subsequence.

The next concept plays a very significant role in analysis and optimization.

Definition1.11  We say that a set §2 is COMPACT in R” if every sequence in 2 contains a subsequence
converging to some point in §2.

The following result is a consequence of the Bolzano-Weierstrass theorem.

Theorem 1.12 A subset §2 of R” is compact if and only if it is closed and bounded.
For subsets 2, £21, and §2; of R” and for A € R, we define the operations:
2+ 2 ={x+y|xe2 ye2} A2:={ix|xe}
'The next proposition can be proved easily.

Proposition 1.13  Lez 21 and §2, be two subsets of R".

(i) If 821 is apen or §2, is open, then §2\ + §2, is open.
(ii) If §2 is closed and §2, is compact, then §2, + §25 is closed.
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Recall now the notions of bounds for subsets of the real line.

Definition 1.14  Let D be a subset of the real line. A number m € R is a LOWER BOUND of D if we
have
x>m forall x € D.

If the set D has a lower bound, then it is BOUNDED BELOW. Similarly, a number M € R is an UPPER
BOUND of D if
X <M forall x €D,

and D is BOUNDED ABOVE if it has an upper bound. Furthermore, we say that the set D is BOUNDED
if it is simultaneously bounded below and above.

Now we are ready to define the concepts of infimum and supremum of sets.

Definition 1.15  Let D C R be nonempty and bounded below. The infimum of D, denoted by inf D,
is the greatest lower bound of D. When D is nonempty and bounded above, its supremum, denoted by
sup D, is the least upper bound of D . If D is not bounded below (resp. above), then we setinf D 1= —o0
(resp. sup D := 00). We also use the convention that inf@ := oo and sup @ := —oo.

The following fundamental axiom ensures that these notions are well-defined.

Completeness Axiom. For every nonempty subset D of R that is bounded above, the least upper bound
of D exists as a real number.

Using the Completeness Axiom, it is easy to see that if a nonempty set is bounded below,
then its greatest lower bound exists as a real number.

Throughout the book we consider for convenience extended-real-valued functions, which
take values in R := (—o0, 00]. The usual conventions of extended arithmetics are that a + oo =
oo foranya € R, 0o + 00 = 00, and ¢ - 0o = oo for ¢ > 0.

Definition1.16  Let f : 2 — R be an extended-real-valued function and let X € 2 with f(x) <
00. Then f is CONTINUOUS af X if for any € > O there is § > O such that

| f(x) — f(X)| < € whenever ||x —X| <38, x € £2.
We say that | is continuous on §2 if it is continuous at every point of 2.

It is obvious from the definition that if f : £ — R is continuous at X (with f(¥) < 00),
then it is finite on the intersection of £2 and a ball centered at X with some radius r > 0. Further-
more, f:§2 — R is continuous at X (with f(X) < oo) if and only if for every sequence {xx} in £2

converging to X the sequence { f(xx)} converges to f(X).
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Definition1.17  Let [ : 2 — R andlet X € 2 with f(X) < oo. We say that f has a LOCAL MIN-
IMUM at X relative to §2 if there is § > O such that

f(x) = f(X) forall x € IB(X;8) N £2.
We also say that f has a GLOBAL/ABSOLUTE MINIMUM at X relative to §2 if

f(x) = f(%) forall x € Q2.

The notions of local and global maxima can be defined similarly.

Finally in this section, we formulate a fundamental result of mathematical analysis and
optimization known as the Weierstrass existence theorem.

Theorem1.18 Let f: 2 — R be a continuous function, where §2 is a nonempty, compact subset
of R”. Then there exist ¥ € £2 and i € £2 such that

f(x) = inf{f(x) | X € [2} and f(u) = sup{f(x) | X € .Q}

In Section 4.1 we present some “unilateral” versions of Theorem 1.18.

1.2 CONVEXSETS

We start the study of convexity with sets and then proceed to functions. Geometric ideas play
an underlying role in convex analysis, its extensions, and applications. Thus we implement the
geometric approach in this book.

Given two elements a and b in R", define the interval/line segment

[a.b] := {Aa + (1—2)b | A € [0, 1]}

Note that if @ = b, then this interval reduces to a singleton [a, b] = {a}.

Definition 1.19 A subset 2 of R" is convEX if [a, b] C 2 whenevera,b € 2. Equivalently, $2 is
convex ifAa + (1 —A)b € Q2 foralla,b € 2 and A € [0, 1].

Given wy, ..., o € R", the element x = Y 7* | A;w;, where Y 7o, A; = land A; > 0 for
some m € N, is called a convex combination of w1, ..., wn.

Proposition 1.20 A subset $2 OJ‘R" is convex if and only if it contains all convex combinations of its
elements.
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Figure 1.1: Convex set and nonconvex set.

Proof. 'The sufficient condition is trivial. To justify the necessity, we show by induction that any
convex combination x = Y i* | A;w; of elements in £2 is an element of £2. This conclusion follows
directly from the definition for m = 1, 2. Fix now a positive integer m > 2 and suppose that every
convex combination of k € N elements from §2, where k < m, belongs to £2. Form the convex
combination

m+1 m+1
y = Z/\iwi, Zli =1, 1>0
i=1 i=1
and observe that if A;y41 =1, then Ay = A, = ... =1;, = 0,50 ¥y = wp+1 € 2. In the case

where A,,41 < 1 we get the representations

ZA,’ = l—lm+1 and ZL = 1,

i=1 P

which imply in turn the inclusion
Aj
z = ——w; € 2.
; 1 - Am+1 '
It yields therefore the relationships

m

by

y=0-=2Ant1) E ﬁwi FAnt10my1 = (1 = Apni1)2 + Anp10my1 € 82
i=1 m

and thus completes the proof of the proposition. O

Proposition 1.21  Lez §21 be a convex subset of R" and let §25 be a convex subset of R . Then the
Cartesian product §21 x §25 is a convex subset of R" x R?.
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Proof: Fixa = (a1.a2),b = (b1,b2) € 21 x §2,and A € (0, 1). Then we have a;, by € §2 and
az, by € §25. 'The convexity of £2; and £2; gives us

Aa; + (1 —X)b; € £2; for i =1,2,
which implies therefore that
Aa+ (1 —=A)b = (Aal + (1 =A)by1, Aas + (1 — A)bz) € 21 % §25.

Thus the Cartesian product £2; x £2 is convex. O

Let us continue with the definition of affine mappings.

Definition1.22 A mapping B : R" — R? is AFFINE if there exist a linear mapping A : R" — R?
and an element b € R? such that B(x) = A(x) + b for all x € R".

Every linear mapping is affine. Moreover, B : R” — R is affine if and only if
BAx +(1—=1)y) =AB(x)+ (1 —A)B(y) forall x,y e R"and A € R.
Now we show that set convexity is preserved under affine operations.

Proposition1.23  Lez B : R" — R? be an affine mapping. Suppose that 2 is a convex subset of R"
and © is a convex subset of RP. Then B(82) is a convex subset of R? and B~'(O) is a convex subset
of R".

Proof. Fixanya,b € B(2) and A € (0,1). Thena = B(x) and b = B(y) for x, y € £2. Since £2
is convex, we have Ax + (1 — 1)y € £2. Then
Aa+ (1—=X)b=AB(x)+ (1-=1)B(y) = B(Ax + (1 —1)y) € B(£2),

which justifies the convexity of the image B(£2).
Taking now any x, y € B~1(®) and A € (0, 1), we get B(x), B(y) € ©. This gives us

AB(x) + (1 —A)B(y) = B()Lx + (1 - )L)y) €O
by the convexity of @. Thus we have Ax + (1 — 1)y € B~1(®), which verifies the convexity of
the inverse image B~1(©). O

Proposition 1.24  Ler §21, 82, C R" be convex and let A € R. Then both sets §21 + $2, and 1§,
are also convex in R".

Proof. It follows directly from the definitions. O
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Next we proceed with infersections of convex sets.

Proposition1.25  Let {824 }aer be a collection of convex subsets of R™. Then (e 2a 15 also a convex
subset of R".

Proof. Taking any a,b € (,¢; 2, we get that a, b € §2, for all @ € I. The convexity of each
24 ensures that Aa + (1 —A)b € 24 for any A € (0,1). Thus Aa + (1 = A)b € (s 24 and
the intersection (), ¢; §2« is convex. O

Definition 1.26  Let §2 be a subset of R". The CONVEX HULL of 2 is defined by
cof2:= ﬂ {C ‘ C isconvex and 2 C C}.

'The next proposition follows directly from the definition and Proposition 1.25.

Figure 1.2: Nonconvex set and its convex hull.

Proposition 1.27  The convex hull co §2 is the smallest convex set containing §2.

Proof. 'The convexity of the set co 2 D §2 follows from Proposition 1.25. On the other hand, for
any convex set C that contains £2 we clearly have co £2 C C, which verifies the conclusion. O

Proposition 1.28  For any subset §2 cy"R", its convex hull admits the representation

cof2 = {fﬁlﬂh 5515==L L-zO,aieS?,meEN}.

i=1 i=1
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Proof. Denoting by C the right-hand side of the representation to prove, we obviously have £2 C
C. Let us check that the set C is convex. Take any a,b € C and get

p q
a = E oid;, b= E ,ijj,
i=1 j=1

where a;, bj € 2, a;,; = Owith Y7 o = Z?Zl B; = 1,and p,q € N. It follows easily that
for every number A € (0, 1), we have

4 q
Aa+(1=Mb = Aeja; + Y (1—A)B;b;.

i=1 j=1

Then the resulting equality
P a P q
D hi+Y (=M =A) i+ (1= Bi=1
i=1 Jj=1 i=1 ji=1

ensures that Aa + (1 — A)b € C, and thus co £2 C C by the definition of co §2. Fix now any a =
Y Aia; € C witha; € 2 Cco2 fori = 1,...,m. Since the set co £2 is convex, we conclude
by Proposition 1.20 that a € co £2 and thus co 2 = C. O

Proposition 1.29  The interior int 2 and closure 2 of a convex set 2 C R" are also convex.

Proof: Fixa,b € int2 and A € (0, 1). Then find an open set V' such that
aeV C andso Aa+ (1 —-A)beAV +(1—-2A)b C £2.

Since AV + (1 — A)b is open, we get Aa + (1 — A)b € int §2, and thus the set int §2 is convex.
To verify the convexity of 2, we fix a,b € 2 and A € (0, 1) and then find sequences {ay}
and {by} in §2 converging to a and b, respectively. By the convexity of §2, the sequence {Aay +
(1 — A)bg} lies entirely in §2 and converges to Aa + (1 — A)b. 'This ensures the inclusion Aa +
(1 —A)b € 2 and thus justifies the convexity of the closure £2. O

To proceed further, for any a, b € R", define the interval
[a.b) :={Aa + (1 —1)b \ A€ (0,1]}.
We can also define the intervals (a. b] and (a, b) in a similar way.

Lemma 1.30  For a convex ser 2 C R" with nonempty interior, take any a € int§2 and b € Q.
Then la, b) C int £2.
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Proof. Since b € £2, for any € > 0, we have b € 2 + €IB. Take now A € (0, 1] and let x; :=

A

xy+elB=2Xa+ (1—A)b+€IB
CAa+ (1—MN)[2+€IB] +€IB
=2da+(1—-1)2 + (1—-A)elB + €IB
C/\[a—i—e IB]—i—(l—A)Q
cCAR+(1-1R2cCe.

Aa + (1 — A)b. Choosing € > 0 such thata + €

IB C §2 gives us

This shows that x; € int £2 and thus verifies the inclusion [a, ) C int £2. O

Now we establish relationships between taking the interior and closure of convex sets.

Proposition1.31  Ler 2 C R” be a convex set with nonempty interior. Then we have:
()int2 =2 and (ii) int2 = int 2.

Proof. (i) Obviously, int £2 C 2. For any b € 2 and a € int £2, define the sequence {xi} by

xk::%a+(l—%)b,keN.

Lemma 1.30 ensures that x € int £2. Since x;z — b, we have b € int 2 and thus verify (i).

(i) Since the inclusion int§2 C int£2 is obvious, it remains to prove the opposite inclusion
int 2 C int £2. To proceed, fix any b € int§2 and a € int 2. If € > 0 is sufficiently small, then

c:=b+e(b—a)e R2,and hence b = €

1+ea+1+e

c €(a,c) Cints2,
which verifies that int £2 C int £2 and thus completes the proof. O

1.3 CONVEXFUNCTIONS

This section collects basic facts about general (extended-real-valued) convex functions including
their analytic and geometric characterizations, important properties as well as their specifications
for particular subclasses. We also define convex set-valued mappings and use them to study a re-
markable class of optimal value functions employed in what follows.

Definition 1.32  Lez [ : 2 — R be an extended-real-valued function define on a convex set 2 C
R™. Then the function f is CONVEX on 2 if

F(rx+ (A =2)y) <Af()+ (A=A f(y) forall x,y € 2 and A € (0,1). (1.1)
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If the inequality in (1.1) is strict for X # y, then f is STRICTLY CONVEX o7 £2.

Given a function f : 2 — R, the extension of f to R" is defined by

f(x) if x € L2,

fx) = .
00 otherwise.
Obviously, if f is convex on §2, where §2 is a convex set, then 7 is convex on R”. Furthermore,
if £:R" — R is a convex function, then it is also convex on every convex subset of R”. This
allows to consider without loss of generality extended-real-valued convex functions on the whole
space R".

Figure 1.3: Convex function and nonconvex function.

Definition 1.33  7he DOMAIN and EPIGRAPH of f : R" — R are defined, respectively, by
dom f :={x e R"| f(x) < o0} and
epi f = {(x,t) € R"XR| xeR" > f(x)} = {(x,t) eR” XR| x €dom f, t > f(x)}.
Let us illustrate the convexity of functions by examples.

Example 1.34  The following functions are convex:

(i) f(x):=(a,x)+b for x e R", wherea € R" and b € R.
(ii) g(x) := ||x|| for x € R".
(iii) 2 (x) := x2 for x e R.
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Indeed, the function f in (i) is convex since

fAx+ 1 =2)y)=(a.Ax + (1=1)y)+b=Aa,x)+ (1 —=A)(a.y)+b
= A({a,x) +b) + (1 =2)({a.y) +b)
=Af(x)+ (1 =X f(y) forall x,y € R" and A € (0, 1).

The function g in (ii) is convex since for x, y € R” and A € (0, 1), we have
gAx + (1 =1)y) = Ax + (A =Dyl = Alx] + A =)yl = rg(x) + (1 = D)g (),

which follows from the triangle inequality and the fact that ||ou| = || - |u]| whenever @ € R
andu € R”.The convexity of the simplest quadratic function / in (iii) follows from a more general
result for the quadratic function on R” given in the next example.

Example1.35 Let Abeann x n symmetric matrix. It is called positive semidefinite if (Au,u) > 0
forallu € R". Let us check that 4 is positive semidefinite if and only if the function f:R"” — R
defined by

f(x) = %(Ax,x), x € R”,

is convex. Indeed, a direct calculation shows that for any x, y € R” and A € (0, 1) we have

M) + (=0 F )~ O+ (1 =2y) = 240 = DAG =) x—n).  (12)

If the matrix A is positive semidefinite, then (A(x — y),x — y) > 0, so the function f is convex
by (1.2). Conversely, assuming the convexity of f and using equality (1.2) forx = u and y =0
verify that A is positive semidefinite.

The following characterization of convexity is known as the Jensen inequality.

Theorem 1.36 A function f : R" — R is convex if and only if for any numbers A; > 0 asi =
1,...,m with Z:”Zl A; = 1 and for any elements x; € R",i = 1,...,m, it holds that

f(ixix,-) < ikif(xi). (1.3)
i=1 i=1

Proof. Since (1.3) immediately implies the convexity of f, we only need to prove that any convex
function f satisfies the Jensen inequality (1.3). Arguing by induction and taking into account that
for m = 1 inequality (1.3) holds trivially and for m = 2 inequality (1.3) holds by the definition
of convexity, we suppose that it holds for an integer m := k with k > 2. Fix numbers 1; > 0,
i=1,...,k+1,with Zf:rll Ai = landelementsx; € R",i = 1,...,k + 1. We obviously have
the relationship

k
D oAhi=1=Qkq
i=1
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IfAgs1 =1, then A; =0foralli =1,...,k and (1.3) obviously holds for m := k + 1 in this
case. Supposing now that 0 < A4y < I, we get

>

i=1

1—)tk+1 B

and by direct calculations based on convexity arrive at

(%A x,) = [(1 —/xk+1)21+j:l +lk+1xk+1]
Zl LAixi

= —Ak+1)f( et

)+ A f )

k
A
=(- /Xk+1)f<z ﬁ%‘) + Akt 1 S (Xk41)

A
= —Am)Z 00+ A /()
k+1
=Y Aif(x).
i=1
This justifies inequality (1.3) and completes the proof of the theorem. O

The next theorem gives a geometric characterization of the function convexity via the con-
vexity of the associated epigraphical set.

Theorem 1.37 A function f : R" — R is convex if and only if its epigraph epi f is a convex
subset of the product space R” x R.

Proof: Assuming that f is convex, fix pairs (x1,#1), (X2,%) € epi f and a number A € (0, 1).
Then we have f(x;) <t fori = 1,2. Thus the convexity of f ensures that
S (Axr+ (1 =2)x2) < Af(x1) + (1= 2) f(x2) < A+ (1 = V).
'This implies therefore that
Alxy,t) + (1 =A)(x2.12) = (Ax1 + (1 = A)x2, Aty + (1 — A)tz) € epi f,

and thus the epigraph epi f is a convex subset of R” x R.
Conversely, suppose that the set epi f* is convex and fix xy,x, € dom f and a number

A € (0,1). Then (x1, f(x1)), (x2, f(x2)) € epi f. This tells us that
(Axi 4+ (1= )x2. Af (x1) + (1= A) f(x2)) = A1, f(x1)) + (1 = A)(x2. f(x2)) € epi f
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and thus implies the inequality

S Axr 4+ (1= 2)x2) <Af(x1) + (1= 2) f(x2),

which justifies the convexity of the function f. O

N VARV

Figure 1.4: Epigraphs of convex function and nonconvex function.

Now we show that convexity is preserved under some important operations.
Proposition 1.38  Ler fi:R" — R be convex Sunctions for all i =1, ... ,m. Then the following
Jfunctions are convex as well:

(i) The multiplication by scalars Af for any A > 0.
(ii) Zhe sum function y ;| f;.

(iii) Zhe maximum function maxi<j<m f;.

Proof. 'The convexity of Af in (i) follows directly from the definition. It is sufficient to prove (ii)
and (iii) for m = 2, since the general cases immediately follow by induction.

(ii) Fix any x, y € R" and A € (0, 1). Then we have

(f1 + fz)(kx +( —/\)y) = fl()tx + (1 - )L)y) + fz(/\x +( —A)y)
SAf1(x) + A =21) f1(y) + Afa(x) + (1 =4) f2(p)
=A(f1 + f2)(x) + A =) (f1 + f2)(),

which verifies the convexity of the sum function fi + f>.

(iii) Denote g := max{ f1, f>} and get for any x, y € R” and A € (0, 1) that
filkx +(1=2)y) < Afi(x) + (1 =1 fi(y) < Ag(x) + (1 = D)g(y)
fori = 1,2. This directly implies that
g(Ax + (1= 1)y) = max {fi(Ax + (1 = 1)y), f2(Ax + (1 =1)y)} < Ag(x) + (1 = V)g(y),

which shows that the maximum function g(x) = max{ f1(x), f>(x)} is convex. O
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The next result concerns the preservation of convexity under function compositions.

Proposition 1.39  Lez f : R" — R be convex and let ¢ : R — R e nondecreasing and convex on
a convex set containing the range of the function f. Then the composition ¢ o f is convex.

Proof. Take any x1, x> € R” and A € (0, 1). Then we have by the convexity of f that
F(Ax1 + (1 =)x2) < Af(x1) + (1= 1) f(x2).

Since ¢ is nondecreasing and it is also convex, it follows that

(go o f)()uxl +(1— k)xz) = ga(f(kxl +(1— A)xz))
<eAf(x) + (1 =2) f(x2))
< Ap(f(x1) + (1 = Ve(f(x2))
= Ao f)(x1) + (1 =2A)(@o [)lx2),

which verifies the convexity of the composition ¢ o f. a

Now we consider the composition of a convex function and an affine mapping.

Proposition 1.40  Let B : R" — R” be an affine mapping and let f : R? — R be a convex func-
tion. ‘Then the composition f o B is convex.

Proof. Taking any x,y € R" and A € (0, 1), we have
(f o B)(Ax + (1 - 2)y) = f(BOx + (1 - 1)) = £(ABG) + (1 - 1)BG))

< Af(B()) + A =1 f(B(y) = A(f o B)(x) + (1 =) (f o B)(»)
and thus justify the convexity of the composition f o B. O

'The following simple consequence of Proposition 1.40 is useful in applications.

Corollary1.41  Let f : R" — R bea convex function. For any x,d € R", the function ¢: R — R
defined by ¢(t) = f(X + td) is convex as well. Conversely, if for every X,d € R" the function ¢

defined above is convex, then [ is also convex.

Proof. Since B(t) = X + td is an affine mapping, the convexity of ¢ immediately follows from
Proposition 1.40. To prove the converse implication, take any x1,x2 € R"”, A € (0, 1) and let
X := X2,d := x1 — x3. Since ¢(t) = f(x + td) is convex, we have

F(Ax1 + (1= )x2) = f(x2 + A(x1 — x2)) = 0(A) = ¢(A(1) + (1 = 1)(0))
<o) + (1 =21)p(0) = Af(x1) + (1 = 4) f(x2),

which verifies the convexity of the function f. a
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'The next proposition is trivial while useful in what follows.

Proposition 1.42  Let f : R” x R? — R be convex. For (X, 7) € R" x R?, the functions p(y) :=
f(x,y) and ¥ (x) := f(x,y) are also convex.

Now we present an important extension of Proposition 1.38(iii).

Proposition 1.43  Ler f; - R" - R Jori € I be a collection of convex functions with a nonempty
index set 1. Then the supremum function f(x) := sup;c; fi(x) is convex.

Proof. Fix x1,x, € R" and A € (0, 1). For everyi € I, we have

filAx1 + (1= 0)x2) < Afi(x1) + (1= Q) fi(x2) < Af(x1) 4+ (1 = 1) f(x2).
which implies in turn that

F(Ax1 + (1= Axa) = sup f; (Axy + (1 — Dxa) < Af(x1) + (1= 2) f(x2).

iel
'This justifies the convexity of the supremum function. O
Our next intention is to characterize convexity of smooth functions of one variable. To pro-

ceed, we begin with the following lemma.

Lemma 1.44  Given a convex function f : R — R, assume that its domain is an open interval I.
Foranya,b € I anda < x < b, we have the inequalities

o) = fla) _ fb) = fla) _ f) - f(x)

X —a b—a b—x

? e (0, 1). Then
—a

Proof. Fix a, b, x as above and form the numbers ¢ := z

fO) = fla+@=a) = f(a+3—(b—a)) = fla+1®-a) = f(tb+(1-Da).

'This gives us the inequalities f(x) < ¢f(b) + (1 —¢) f(a) and
F) = f@ = tfB) + (1 =0 f(@ = fl@) = t[1B) = f@] = 5= (®) = f(@)).

which can be equivalently written as

f) = fla) _ fb) = fla)

X —a b—a
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Similarly, we have the estimate

—b
FO) = f®) 2 1fB) + 1 =D f@ = fb) = (¢ = D[f®) = f@)] = 3= () = f(@)).

which finally implies that
fb) = fla) _ f(b) = f(x)
b—a - b—x
and thus completes the proof of the lemma. O

Theorem1.45  Suppose that f : R — R is differentiable on its domain, which is an open interval
I.Then f is convex if and only if the derivative f” is nondecreasing on 1.

Proof. Suppose that f is convex and fixa < b with a, b € I. By Lemma 1.44, we have
fx) = fla) _ f(b)— f(a)

X—a - b—a

for any x € (a, b). 'This implies by the derivative definition that

fwstO=t@
—a
Similarly, we arrive at the estimate
f(bz — /@ _ £1(b)
—a

and conclude that f"(a) < f'(b), i.e., f’ is a nondecreasing function.
To prove the converse, suppose that f” is nondecreasing on I and fix x; < x, with x1, x, €
I and t € (0, 1). Then
X1 < x; < xp for x; :=1tx1 + (1 —1)x,.

By the mean value theorem, we find ¢y, ¢5 such that x; < ¢y < x; < ¢ < xp and

f(x) = f(x1) = fllen)(xe —x1) = f'(e)( —1)(x2 — x1),
f(xt) = f(x2) = f'(c2)(xs — x2) = f'(c2)t(x1 — x2).

'This can be equivalently rewritten as

tf(x) —tf(x1) = fet(d —1)(x2 — x1),
A=0)fCxr) = (A —=1)f(x2) = fl(e2)t(1 —1)(x1 — x2).

Since f'(c1) < f’(c2), adding these equalities yields
Sl = tf(x1) + (1 —1) fx2),

which justifies the convexity of the function f. O
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Corollary1.46  Let f : R — R be twice differentiable on its domain, which is an open interval 1.
Then | is convex if and only if f"(x) = 0 forallx € I.

Proof. Since f”(x) > Oforall x € I if and only if the derivative function f’ is nondecreasing on
this interval. Then the conclusion follows directly from Theorem 1.45. O

Example 1.47  Consider the function

! if x>0
— i
S(x):=4x ’

oo otherwise.

2

To verify its convexity, we get that f”'(x) = — > Oforall x belonging to the domain of f, which
X

is I = (0, 00). Thus this function is convex on R by Corollary 1.46.

Next we define the notion of ser-valued mappings (or multifunctions), which plays an im-
portant role in modern convex analysis, its extensions, and applications.

Definition 1.48 1z say that F is a SET-VALUED MAPPING between R" and R? and denote it by
F :R" = RP if F(x) is a subset of R? for every x € R". The DOMAIN and GRAPH of F are defined,
respectively, by

dom F := {x € R" | F(x) # 0} and gph F := {(x,y) € R" xR”| y € F(x)}.
Any single-valued mapping F : R” — R” is a particular set-valued mapping where the set

F(x) is a singleton for every x € R". It is essential in the following definition that the mapping
F is set-valued.

Definition1.49  Lez F:R" = R? andlet ¢ : R" x R? — R. The OPTIMAL VALUE 07 MARGINAL
FUNCTION associated with F and ¢ is defined by

p(x) :=inf{p(x,y) | y € F(x)}, x € R". (1.4)

Throughout this section we assume that (x) > —oo for every x € R”.

Proposition 1.50  Assume that ¢: R" x R? — R is a convex function and that F:R" = R? is of
convex graph. Then the optimal value function | in (1.4) is convex.
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Hz) =[], =[]

~Is]

Figure 1.5: Graph of set-valued mapping.

Proof. Take x1,x, € dompu, A € (0,1). For any € > 0, find y; € F(x;) such that
o(xi, yi) < u(x;) +e€ for i =1,2.
It directly implies the inequalities
Ap(x1, y1) < Apxr) + e, (1= A)p(xz, y2) < (1 —=A)plxz) + (1 —A)e.

Summing up these inequalities and employing the convexity of ¢ yield

@(Ax1 + (1= Mxz, Ayr + (1 = A)y2) < Ap(x1, y1) + (1 — Dg(x2, y2)
< Ap(xr) + (1= A)pu(x2) +e.

Furthermore, the convexity of gph F gives us
(Ax1 4+ (1= D)x2, Ay1 4+ (1= A)y2) = A(x1, 1) + (1 = A)(x2, y2) € gph F,
and therefore Ay; + (1 —A)y> € F(Axq + (1 — A)x2). This implies that
p(Axr + (1= Dx2) < @(Axr + (1= Dxz. Ay + (1= A)y2) < Ap(xr) + (1 = DHp(xz) +e.
Letting finally € — 0 ensures the convexity of the optimal value function w. O

Using Proposition 1.50, we can verify convexity in many situations. For instance, given
two convex functions f; : R” — R, i = 1,2, let o(x, y) := fi(x) + y and F(x) := [f2(x), 00).
Then the function ¢ is convex and set gph F = epi f> is convex as well, and hence we justify the
convexity of the sum

px) = inf @(x,y) = fi(x) + fa(x).
yEeF(x)
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Another example concerns compositions. Let f : R? — R be convex and let B : R” — R” be
affine. Define ¢(x, y) := f(y) and F(x) := {B(x)}. Observe that ¢ is convex while F is of con-
vex graph. Thus we have the convex composition

pu(x) = inf @(x,y) = f(B(x)), x e R".
YEF(x)

The examples presented above recover the results obtained previously by direct proofs. Now we
establish via Proposition 1.50 the convexity of three new classes of functions.

Proposition 1.51  Lez ¢ : R? — R be convex and let B : R? — R" be affine. Consider the set-
valued inverse image mapping B7L:R" = RP?, define

f(x):=inf{p(y) |y € B"'(x)}, xeR",

and suppose that f(x) > —oo for all x € R". Then f is a convex function.

Proof. Let p(x,y) = ¢(y) and F(x) := B~(x). Then the set
gph F = {(u,v) € R" xR”| B(v) = u}
is obviously convex. Since we have the representation

x) = inf , x eR",
S(x) yem)w(y)

the convexity of f follows directly from Proposition 1.50. O

Proposition 1.52  For convex functions fi, [ : R > R, define the INFIMAL CONVOLUTION
(/1 ® f2)(x) :=inf{fi(x1) + fa(x2) | x1 + x2 = x}
and suppose that (f1 @ f2)(x) > —oo for all x € R". Then fi @ f5 is also convex.
Proof. Define ¢ : R" xR" — R by ¢(x1,x2) := f1(x1) + fa(x2) and B : R" xR" — R" by
B(x1,x2) := x1 + x2. We have

inf{go(xl,xz) | (x1,x2) € B_l(x)} =(f1® f2)(x) forall x € R",

which implies the convexity of (f; & f2) by Proposition 1.51. O
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Definition 1.53 A function g : R? — R is called NONDECREASING COMPONENTWISE if
[xi <yi forall i =1,....p] = [g(x1.....Xp) <&¥1.-... ¥p)].

Now we are ready to present the final consequence of Proposition 1.50 in this section that
involves the composition.

Proposition 1.54  Define h : R" — R” by h(x) := (fi1(x),..., fp(x)), where fi : R" — R for
i =1,..., p are convex functions. Suppose that g R? — R is convex and nondecreasing componen-
twise. Then the composition g o h : R" — R is a convex function.

Proof. Let F : R" = R” be a set-valued mapping defined by
F(x) = [f1(x), 00) X [f2(x), 00) X ... x [fp(x), 00).
Then the graph of F is represented by
gph F = {(x.t1.....1,) € R" xR? | 1; > f;(x)}.

Since all f; are convex, the set gph F is convex as well. Define further ¢ : R” x R” — R by
@(x,y) := g(y) and observe, since g is increasing componentwise, that

inflp(x,y) |y € F)} = g(fi(x)..... fp(x)) = (g o (),

which ensures the convexity of the composition g o & by Proposition 1.50. a

1.4 RELATIVE INTERIORS OF CONVEX SETS

We begin this section with the definition and properties of affine sets. Given two elements a and
b in R", the line connecting them is

Lla.b]:={Ala+(1-1)b|LeR}.
Note that if a = b, then L[a, b] = {a}.
Definition 1.55 A subset §2 of R" is AFFINE if for any a, b € §2 we have L[a, b] C 2.

For instance, any point, line, and plane in R3 are affine sets. The empty set and the whole
space are always affine. It follows from the definition that the intersection of any collection of
affine sets is affine. This leads us to the construction of the affine hull of a set.

Definition 1.56  7he AFFINE HULL of a set §2 C R" is

aff 2 := ﬂ{C | C is affine and §2 C C}.
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An element x in R” of the form

m m
)CZZA,'Q)I' with ZA, =1, meN,
i=1 i=1

is called an affine combination of w1, . .., wm. The proof of the next proposition is straightforward
and thus is omitted.

Proposition 1.57  Ihe following assertions hold:

(i) A4 set 82 is affine if and only if $2 contains all affine combinations of its elements.

(ii) Lez $2, §21, and 2, be affine subsets of R". Then the sum 2\ + §2, and the scalar product AS2 for
any A € R are also affine subsets of R".

(iii) Lez B : R" — R? be an affine mapping. If 2 is an affine subset of R" and © is an affine subset
of RP, then the image B(82) is an affine subset of RP and the inverse image B~ Y(®)isan affine subset
of R

(iv) Given §2 C R", its affine hull is the smallest affine set containing 2. We have

aff 2 = {ikiwi
i=1

(v) A set §2 is a (linear) subspace if and only if §2 is an affine set containing the origin.

f:)tiZLwiE.Q,mEN}.

i=1

Next we consider relationships between affine sets and (linear) subspaces.

Lemma 1.58 A nonempty subset $2 of R" is affine if and only if 2 — w is a subspace of R" for any
w € §2.

Proof. Suppose that a nonempty set 2 C R” is affine. It follows from Proposition 1.57(v) that
£2 — w is a subspace for any w € £2. Conversely, fix w € £2 and suppose that £2 — w is a subspace
denoted by L. Then the set £2 = w + L is obviously affine. O

'The preceding lemma leads to the following notion.

Definition 1.59  An affine set §2 is PARALLEL fo a subspace L if 2 = w + L for some w € $2.

The next proposition justifies the form of the parallel subspace.

Proposition1.60  Lez §2 be a nonempty, affine subset OfR”. Then it is parallel to the unique subspace
L of R" givenby L = §2 — £2.
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Proof. Given a nonempty, affine set §2, fix w € £2 and come up to the linear subspace L := 2 — o
parallel to £2. To justify the uniqueness of such L, take any w;,w, € §2 and any subspaces
Li,L, CR" suchthat 2 = w; +L{ = w> + L,. Then L1 = wy — w1 + L. Since 0 € Ly, we
have w1 — w, € L. 'This implies that w, — w1 € L, and thus L1 = wp — w1 + L, C Ly. Simi-
larly, we get L, C L1, which justifies that L1 = L.

It remains to verify the representation L = §2 — §2. Let £2 = @ + L with the unique sub-
space L and some w € 2. Then L = 2 —w C 2 — 2. Fixany x = u — o with u,w € §2 and
observe that £2 — w is a subspace parallel to £2. Hence £2 — w = L by the uniqueness of L proved
above. This ensures that x € 2 —w = L and thus 2 — 2 C L. O

'The uniqueness of the parallel subspace shows that the next notion is well defined.

Definition 1.61  7he DIMENSION OF AN AFFINE SET @ # 2 C R" is the dimension of the linear
subspace parallel to §2. Furthermore, the DIMENSION OF A CONVEX SET @ # §2 C R" is the dimension

of its affine hull aft 2.
To proceed further, we need yet another definition important in what follows.

Definition 1.62  The elements v, . .., Uy, in R", m > 1, are AFFINELY INDEPENDENT if
m m
[ > hivi=0. 3 ki =0] = [ =0 foratti =0,....m].
i=0 i=0

It is easy to observe the following relationship with the linear independence.

Proposition 1.63  The elements vy, . . ., Uy in R" are affinely independent if and only if the elements
V1 — V0, ..., Uy — Vg are linearly independent.

Proof. Suppose that v, ..., vy, are affinely independent and consider the system

m m
Zki(vi —v9) =0, ie., Agvg + Z)Liv,- =0,

i=1 i=1

where Ag 1= — er-"zl A;. Since the elements vy, . .., U, are affinely independent and Z:"zo Ai =
0, we have that A; = O foralli = 1,...,m. Thus v1 — v, ..., Uy — Vo are linearly independent.
The proof of the converse statement is straightforward. O

Recall that the span of some set C, span C, is the linear subspace generated by C.

Lemma1.64 Ler 2 := aff{vg, ..., v}, wherev; € ]R"for alli = 0,...,m. Then the span of the
set{V1 — Vo, ..., U — Vo} is the subspace parallel fo $2.
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Proof: Denote by L the subspace parallel to §2. Then £2 — vg = L and therefore v; — v € L for
alli =1,...,m. This gives

span{v; —vo | i =1,....m} C L.

To prove the converse inclusion, fix any v € L and get v + vg € £2. Thus we have

m m
v+vo=Zlivi, ZX;':L
i=0 i=0

'This implies the relationship

m
v :ZAi(vi—vo)ESpan{vi—vo | i = 1,...,m},

i=1
which justifies the converse inclusion and hence completes the proof. O
'The proof of the next proposition is rather straightforward.

Proposition1.65  The elements vy, . . ., Uy are affinely independent in R” if and only if its affine hull
2 := aff{vy, ..., vy} is m-dimensional.

Proof. Suppose that vo,..., U, are affinely independent. Then Lemma 1.64 tells us that the
subspace L := span{v; —vo | i = 1,...,m} is parallel to £2. The linear independence of v; —
Vo, . ... Um — Vg by Proposition 1.63 means that the subspace L is m-dimensional and so is £2.
'The proof of the converse statement is also straightforward. O

Affinely independent systems lead us to the construction of simp/ices.
Definition 1.66  Let vy, . .., Uy be affinely independent in R". Then the set
Ay = co{vi ‘ i :0,...,m}
is called an m-sIMPLEX in R" with the verticesv;, i =0, ..., m.

An important role of simplex vertices is revealed by the following proposition.

Proposition1.67  Consider an m-simplex Ay, with verticesv; fori = 0,...,m. Foreveryv € Ay,
there is a unique element (Ao, ..., Am) € Rﬁ“ such that

m

v = ilivi, Z)ti =L
i=0

i=0
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Proof. Let (Ao, ..., Am) € Rﬁ""l and (o, ..., Um) € Rﬁﬂ satisfy

m m m m
U=Zlivi=ZMivi, ZM=ZIL;’=1-
i=0 i=0 i=0 i=0

'This immediately implies the equalities

m m
D Qi— )i =0, Y (i — ) =0.
i=0 i=0
Since vy, ..., Uy are affinely independent, we have A; = u; fori =0,...,m. O

Now we are ready to define a major notion of relative interiors of convex sets.

Definition 1.68  Ler §2 be a convex set. We say that an element v € §2 belongs to the RELATIVE
INTERIOR 1i §2 of §2 if there exists € > 0 such that IB(v;€) Naft 2 C £2.

We begin the study of relative interiors with the following lemma.

Lemma 1.69  Any linear mapping A : R" — R? is continuous.

Proof. Let{e, ..., e,} be the standard orthonormal basis of R” and let v; 1= A(e;),i = 1,...,n.
For any x € R" with x = (x1,...,x,), we have

A(x) = A(Xn:xiei) = Xn:xiA(ei) = Zn:x,-v,-.
i=1 i=1 i=1

Then the triangle inequality and the Cauchy-Schwarz inequality give us

n n n
TACON <Y lxlllvill = [ D 1wl | D llvill> = Ml|x|,
i=1 i=1 i=1

where M := />, ||vi . It follows furthermore that

[AG) = AW = [A(x = )l = Mlx — y|| forall x.yeR",

which implies the continuity of the mapping A. O

'The next proposition plays an essential role in what follows.

Proposition 1.70  Let Ay, be an m-simplex in R™ with somem > 1. Then 1i A,y # .
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Proof. Consider the vertices vo, . .., U, of the simplex A,, and denote
1 m
Vi= ——— ;.
TEP Pl

We prove the proposition by showing that v € ri A,,. Define
L:=span{v; —vo |i =1,....m}

and observe that L is the m-dimensional subspace of R" parallel to aff A, = aff{vg, ..., vm}. It
is easy to see that for every x € L there is a unique collection (Ag, ..., A;,) € R™1 with

m m
x=Zkivi, Zli=0-
i=0 i=0

Consider the mapping A4:L — R™*+! " which maps x to the corresponding coeflicients
(X0s ..., Am) € R™T1 a5 above. Then A is linear, and hence it is continuous by Lemma 1.69.
Since A(0) = 0, we can choose § > 0 such that

|Aw)| < ! whenever |lu|| <.

m+1
Let us now show that (v + §IB) N aff A,, C A,,, which means that v € ri A,. To proceed, fix any
x € (v+38IB) Naff A, and get that x = v + u for some u € 8IB. Since v, x € aff A,,, and u =
x —v,wehaveu € L.Denoting A(u) := (@, . . . , &) gives us the representationu = Y 1o &, V;
with Y7L ) & = 0 and the estimate

lai| < |1 A) ]| < forall i =0,...,m.

m+ 1

Then implies in turn that
m 1 m
vtu = ;(—m 1 + )i = ;Mivi,

1
where j; 1= p——" +a; >0fori =0,...,m. Since Y /-, i = 1, this ensures that x € A,.

Thus (v + 8IB) N aff A,,, C A, and therefore v € ri A,,. O

Lemma 1.71  Let 2 be a nonempty, convex set in R" of dimension m > 1. Then there exist m + 1
affinely independent elements vy, ..., vy in §2.
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Proof: Let Ay := {vp.....vr} be a k—simplex of maximal dimension contained in §2. Then
Vo, . ..., Vg are affinely independent. To verify now that k = m, form K := aff{vy, ..., vt} and
observe that K C aff §2 since {vo, ..., vg} C 2. The opposite inclusion also holds since we have
£2 C K. Justifying it, we argue by contradiction and suppose that there exists w € §2 such that
w ¢ K.'Then a direct application of the definition of affine independence shows that vy, ..., vk, w
are affinely independent being a subset of 2, which is a contradiction. Thus K = aff £2, and hence
we get k = dim K = dimaff 2 = dim 2 = m. O

'The next is one of the most fundamental results of convex finite-dimensional geometry.

Theorem 1.72  Let §2 be a nonempty, convex set in R”. The following assertions hold:

(i) We always have ri £2 # @.
(ii) We have [a,b) C 1i§2 foranya € rif2 and b € £2.

Proof. (i) Let m be the dimension of §2. Observe first that the case where m = 0 is trivial since in
this case £2 is a singleton and ri §2 = £2. Suppose that/m > 1 and find m + 1 affinely independent
elements vy, ..., U in 2 as in Lemma 1.71. Consider further the m-simplex

Ap := cofvg,..., Um}.

We can show that aff A,,, = aff 2. To complete the proof, take v € ri A,,, which exists by Propo-
sition 1.70, and get for any small € > 0 that

IB(v,¢€) Naff 2 = IB(v,e) Naff A, C Ay C 2.

'This verifies that v € ri £2 by the definition of relative interior.

(ii) Let L be the subspace of R" parallel to aff €2 and let m := dim L. Then there is a bijective
linear mapping A4 : L — R such that both 4 and A~1 are continuous. Fix x¢ € aff 2 and define
the mapping f :aff 2 — R™ by f(x) := A(x — x¢). It is easy to check that f is a bijective
affine mapping and that both f and f ! are continuous. We also see that a € ri £ if and only if
f(a) € int f(£2), and that b € 2 if and only if f(b) € f(2). Then [f(a), f(b)) C int f(£2) by
Lemma 1.30. This shows that [a, b) C ri £2. O

We conclude this section by the following properties of the relative interior.

Proposition 1.73  Let §2 be a nonempty, convex subset of R”. For the convex sets 11 2 and $2, we
have that () 11 2 = Q2 and (i) 1i 2 = 1i 2.
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Proof. Note that the convexity of ri §2 follows from Theorem 1.72(ii) while the convexity of £2 was
proved in Proposition 1.29. To justify assertion (i) of this proposition, observe that the inclusion
112 C £ is obvious. Fix b € §2, choose a € ri £2, and form the sequence

1 1
Xk.:%a+(1—%)b, kEN,
which converges to b as k — oco. Since x; € ri 2 by Theorem 1.72(ii), we have b € ri 22. Thus
£2 C i £2, which verifies (i). The proof (ii) is similar to that of Proposition 1.31(ii). O

1.5 THE DISTANCE FUNCTION

The last section of this chapter is devoted to the study of the class of distance functions for con-
vex sets, which belongs to the most interesting and important subjects of convex analysis and
its extensions. Functions of this type are intrinsically nondifferentiable while they naturally and
frequently appear in analysis and applications.

d(a; Q)

Figure 1.6: Distance function.

Given a set £2 C R", the distance function associated with §2 is defined by
d(x:2) :=inf{||x —o| |0 € 2}. (1.5)

Recall further that a mapping f:R" — R? is Lipschitz continuous with constant £ > 0 on some
set C C R" if we have the estimate

I/ (x) = fOII < £llx — y|| forall x,y e C. (1.6)

Note that the Lipschitz continuity of f in (1.6) specifies its continuity with a /inear rate.

Proposition 1.74  Let 2 be a nonempty subset of R”. The  following hold:
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(i) d(x;2) = 0 ifand only if x € Q2.

(ii) The function d(x: §2) is Lipschitz continuous with constant £ = 1 on R”.
Proof- (i) Suppose that d(x; £2) = 0. For each k € N, find wi € §2 such that

1 1
0=d(x;2) < ||lx —wrl| <d(x;2) + T - o

which ensures that the sequence {wy } converges to x, and hence x € £2.
Conversely, let x € £2 and find a sequence {wx} C §2 converging to x. Then

0<d(x;2) < |x—wg| forall k € N,

which implies that d(x; £2) = 0 since ||x — wi || — 0 as k — oo.

(ii) For any w € £2, we have the estimate
d(x:2) < |lx —ol = |lx =yl + |y — ol
which implies in turn that
dx:2) < |x —y| +inf{lly —oll |0 € 2} =[x —y| + d(y: Q).

Similarly, we get d(y; 2) < ||y — x|| + d(x: §2) and thus |d (x; £2) — d(y; £2)| < ||x — y||, which
justifies by (1.6) the Lipschitz continuity of d(x; §2) on R” with constant £ = 1. a

For each x € R", the Euclidean projection from x to §2 is defined by
Ix;2) :={we||x—ol=dx2)} (1.7)

Proposition 1.75  Let §2 be a nonempty, closed subset of R”. Then Jfor any x € R” the Euclidean
projection I1(x; §2) is nonempty.

Proof. By definition (1.7), for each k € N there exists w; € §2 such that

1
d(x:82) = llx — o] < d(x:82) + .

It is clear that {wy } is a bounded sequence. Thus it has a subsequence {wy, } that converges to w.
Since £2 is closed, w € £2. Letting £ — o0 in the inequality

1
d(x;82) < ||x —wr, | <d(x;2) + o
L

we have d(x; 2) = | x — w||, which ensures that w € IT(x; £2). O
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An interesting consequence of convexity is the following unique projection property.

Corollary 1.76  If $2 is a nonempty, closed, convex subset of]R", then for each x € R” the Euclidean
projection I1(x; §2) is a singleton.

Proof. 'The nonemptiness of the projection IT(x; §2) follows from Proposition 1.75. To prove the
uniqueness, suppose that wi, w, € I1(x; §2) with w1 # w,. Then

lx — w1l = llx — w2 = d(x:£2).

By the classical parallelogram equality, we have that

_@ erwz H2 4 o —on]?

2x w1l = v — o> + = a2 = 2| x _

'This directly implies that

w1 — w2|?

. <llx—o|? = [d(x; )],

w1 + wsy ||2
[ == = -l

w1 + Wy

which is a contradiction due to the inclusion € . O

Now we show that the convexity of a nonempty, closed set and its distance function are
equivalent. It is an easy exercise to show that the convexity of an arbitrary set £2 implies the
convexity of its distance function.

Proposition 1.77  Let 2 be a nonempty, closed subset of R”. Then the Sfunction d(-; §2) is convex if
and only if the set §2 is convex.

Proof. Suppose that §2 is convex. Taking x1,x, € R" and w; := IT(x;; £2), we have
lx; —wil| = d(x;;82) for i =1,2.
The convexity of £2 ensures that Aw; + (1 — A)w, € §2 for any A € (0, 1). It yields
d(Axl + (1 — A)Xz; 9) < ||/\,X1 + (1 — A)XZ — [)La)l + (1 — k)w2]||
< Alxr — ol + (1 =) |lx2 — w2
= Ad(x1;821) + (1 = )d(x2; £22),

which implies therefore the convexity of the distance function d(-; §2) by

d(Ax1 + (1= D)x2: 2) < Ad(x1; 2) + (1 = )d (x2; 2).
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To prove the converse implication, suppose that d(-; £2) is convex and fix any w; € §2 fori = 1,2
and A € (0, 1). Then we have

d(Aor + (1 = Vw2 2) < Ad(w1:2) + (1 — V)d(wz: 2) = 0.
Since £2 is closed, this yields Aw; 4+ (1 — A)w, € £2 and so justifies the convexity of £2. a

Next we characterize the Euclidean projection to convex sets in R”. In the proposition
below and in what follows we often identify the projection I7(x; §2) with its unique element if §2
is a nonempty, closed, convex set.

Figure 1.7: Euclidean projection.

Proposition 1.78  Let §2 be a nonempty, convex subset of R” and let @ € $2. Then we have @ €
I1(x; 82) if and only if
(¥ —d,0—d) <0 forall w e $2. (1.8)

Proof. Take & € I1(x;$2) and get forany w € 22, A € (0, 1) that ® + A(w — @) € §2. Thus

1% —al? = [dE2)] < 1% - [ + Ao — o)
= ||¥ — @] —2M{X — @, 0 — @) + A?||lo — &%
'This readily implies that
20X — @, 0 — o) < Ao — ol

Letting A — 0T, we arrive at (1.8).
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To verify the converse, suppose that (1.8) holds. Then for any @ € §2 we get

[¥—o|*>=x-0+&—o|
=X -0+ |0 —o|*+2(7—d,0—o)
=|F-al*+ [0 —-o|*-2(k-d.0—d) > ¥ — o>

Thus ||x — @ < ||¥ — ]| for all w € §2, which implies @ € IT(X; §2) and completes the proof.
O

We know from the above that for any nonempty, closed, convex set £2 in R” the Euclidean
projection I71(x; £2) is a singleton. Now we show that the projection mapping is in fact nonexpan-
sive, i.e., it satisfies the following Lipschitz property.

Proposition 1.79  Let §2 be a nonempty, closed, convex subset OJ‘R". Then for any elements X1, X» €
R” we have the estimate

HH(XU £2) — I (x2: £2) ||2 = (H(X1§ 2) = (x2:82), x1 — Xz)-
In particular, it implies the Lipschitz continuity of the projection with constant £ = 1:

”H(XI;Q) —H(Xz;g)” < ||X1 —X2|| fora[l X1,X2 € R”.

Proof. It follows from the preceding proposition that
(H(xz; ) —I(x1;82),x1 — H(xl;.Q)) <0 forall x;,x, € R".
Changing the roles of x1, x5 in the inequality above and summing them up give us
(M (x1:02) = M (x2;82), x2 — x1 + (x5 2) — [1(x2; 2)) < 0.

This implies the first estimate in the proposition. Finally, the nonexpansive property of the Eu-
clidean projection follows directly from

| A1 2) = M2 2)|* < (M (x1:2) — D (x2: 2). %1 — x2)
< | (xq; 2) — M (x2; 2)| - |lxg — x2]

for all x1, x, € R", which completes the proof of the proposition. O

1.6 EXERCISES FOR CHAPTER 1

Exercise 1.1 Let £2; and £2; be nonempty, closed, convex subsets of R” such that §2; is bounded
or §2, is bounded. Show that £2; — £2, is a nonempty, closed, convex set. Give an example of two
nonempty, closed, convex sets §21, §2, for which §2; — £2; is not closed.
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Exercise 1.2 Let £ be a subset of R”. We say that 2 is a cone if Ax € £2 whenever A > 0 and
x € £2. Show that the following are equivalent:

(i) £2 is a convex cone.
(i) x + y € 2 whenever x, y € £2, and Ax € 2 whenever x € £2 and A > 0.

Exercise 1.3 (i) Let £2 be a nonempty, convex set that contains 0 and let 0 < A; < A,. Show
that 1182 C 1,£2.
(ii) Let £2 be a nonempty, convex set and let o, § > 0. Show that w2 + B2 C (« + p)£2.

Exercise 1.4 (i) Let £2; for i = 1,...,m be nonempty, convex sets in R”. Show that

x € co /L, £2; if and only if there exist elements w; € £2; and A; > 0 for i = 1,...,m with
it Ai = lsuchthatx = Y7L Ljw;.

(ii) Let £2; fori = 1,...,m be nonempty, convex cones in R”. Show that

i.@i = CO{LmJ .Q,'}.
i=1

i=1

Exercise 1.5 Let 2 be a nonempty, convex cone in R”. Show that £2 is a linear subspace of R”
ifand only if 2 = —£2.

Exercise 1.6 Show that the following functions are convex on R”:

(i) f(x) = a|x]||, where & > 0.

(ii) f(x) = |x —a|? where a € R".

(iii) f(x) = ||Ax — b||, where A is an p X n matrix and b € R?.
(iv) f(x) = ||x||4, where ¢ > 1.

Exercise 1.7 Show that the following functions are convex on the given domains:

(i) f(x) = e?*, x € R, where a is a constant.

(ii) f(x) = x4, x € [0, 00), where ¢ > 1 is a constant.
(iii) /' (x) = —In(x), x € (0, 00).

(iv) f(x) = xIn(x), x € (0, 00).

Exercise 1.8 (i) Give an example of a function f : R” x R” — R, which is convex with respect
to each variable but not convex with respect to both.
(ii) Let f; : R" — Rfori = 1,2 be convex functions. Can we conclude that the minimum function

min{ f1, f2}(x) := min{ f1(x), f2(x)} is convex?

Exercise 1.9 Give an example showing that the product of two real-valued convex functions is
not necessarily convex.
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Exercise 1.10 Verify that the set {(x,7) € R" xR |t > ||x]|} is closed and convex.

Exercise 1.11 'The indicator function associated with a set £2 is defined by

0 if xe 2,

oo otherwise.

8(x; 82) =

(i) Calculate §(-; £2) for 2 = 0, 2 = R",and 2 = [-1, 1].
(ii) Show that the set £2 is convex set if and only if its indicator function §(-; §2) is convex.

Exercise 1.12 Show that if f : R — [0, 00) is a convex function, then its g-power f?(x) :=
(f(x))4 is also convex for any ¢ > 1.

Exercise 1.13 Let f; : R” — R fori = 1,2 be convex functions. Define

21 :={(x,A1,12) e R”" xR xR | A; > f1(x)},
2, = {(X,A],/\.z) e R” XRXR| Ay > fz(x)}

(i) Show that the sets §2;, £2, are convex.
(ii) Define the set-valued mapping F:R” = R? by F(x) := [f1(x), 00) X [f2(x), 00) and verify
that the graph of F' is £2; N £2,.

Exercise 1.14 We say that f : R” — R is positively homogeneous if f(ax) = af (x) foralla >
0, and that f is subadditive if f(x + y) < f(x) + f(y) forall x, y € R". Show that a positively
homogeneous function is convex if and only if it is subadditive.

Exercise 1.15 Given a nonempty set 2 C R”, define

Kg:={ix|1>0 xe@}=|]r.
A>0
(i) Show that K¢ is a cone.
(ii) Show that K, is the smallest cone containing 2.
(iii) Show that if £2 is convex, then the cone K¢ is convex as well.

Exercise 1.16 Let ¢ : R” x R? — R be a convex function and let K be a nonempty, convex
subset of R?. Suppose that for each x € R” the function ¢(x, ) is bounded below on K. Verify
that the function on R” defined by f(x) := inf{e(x,y) | y € K} is convex.

Exercise 1.17 Let f : R” — R be a convex function.

(i) Show that for every o € R the leve/ set {x € R" | f(x) < a} is convex.
y

(i) Let £2 C R be a convex set. Is it true in general that the inverse image f~1(£2) is a convex
subset of R"?
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Exercise 1.18 Let C be a convex subset of R 1.

(i) For x € R", define F(x) := {A € R | (x,4) € C}. Show that F is a set-valued mapping with
convex graph and give an explicit formula for its graph.
(ii) For x € R”, define the function

fe(x) :=inf{d e R| (x,1) e C}. (1.9)

Find an explicit formula for fc when C is the closed unit ball of R?.
(iii) For the function f¢ defined in (ii), show that if f¢(x) > —oo for all x € R”, then f¢ is a
convex function.

Exercise 1.19 Let f : R" — R be bounded from below. Define its convexification
(co f)(x) := inf{ 3 ki fx) ( 220 Y =1 Axi=x me N}. (1.10)
i=1 i=1 i=1

Verify that (1.10) is convex with co /' = f¢, C := co(epi f), and fc defined in (1.9).

Exercise 1.20 We say that f : R" — R is quasiconvex if
f(Ax + (1 =21)y) <max{f(x), f(y)} forall x,y eR", A€ (0,1).

(i) Show that a function f is quasiconvex if and only if for any o € R the level set {x €
R"| f(x) < a} is a convex set.

(ii) Show that any convex function f:R” — R is quasiconvex. Give an example demonstrating
that the converse is not true.

Exercise 1.21 Let a be a nonzero element in R” and let b € R. Show that
2:={x eR"| (a,x) = b}
is an affine set with dim £2 = 1.

Exercise 1.22 Let the set {vy, ..., vy} consist of affinely independent elements and let v ¢
aff {v1....,vp}. Show that vy, ..., vy, v are affinely independent.

Exercise 1.23 Suppose that £2 is a convex subset of R” with dim 2 = m, m > 1. Let the set
{vi,....,vm} C £2 consist of affinely independent elements and let

Ay 1= co {vl,...,vm}.

Show that aff 2 = aff A, = aff{vl, e vm}.
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Exercise 1.24 Let £2 be a nonempty, convex subset of R”.

(i) Show that aff 2 = aff 2.

(ii) Show that for any ¥ € ri 22 and x € £ there exists > 0 such that X + (¥ — x) € £2.
(iii) Prove Proposition 1.73(ii).

Exercise 1.25 Let £2,, £2, C R” be convex sets with ri £2; N i 2, # @. Show that:

1) 21 N2 =2,N02,.

(ll) ri (.(21 N 92) =ri .(21 N ri.Qz.

Exercise 1.26 Let 21, £2, C R” be convex sets with £21 = §2,. Show that ri £21 = ri £2.

Exercise 1.27 (i) Let B : R” — R” be an affine mapping and let £2 be a convex subset of R”.
Prove the equality
B(ri 2) = ri B(£2).

(ii) Let £21 and £2, be convex subsets of R”. Show that ri (£21 — £25) = ri 27 — ri §25.

Exercise 1.28 Let f : R” — R be a convex function. Show that:
(i) aff (epi f) = aff (dom f) x R.
(i) ri (epi /) = {(x,4) | x eri(dom f), A > f(x)}.

Exercise 1.29 Find the explicit formulas for the distance function d(x; £2) and the Euclidean
P
projection I1(x; £2) in the following cases:

(i) £2 is the closed unit ball of R”.
(i) 2 := {(x1.x2) € R*| |x1| + |x2] < 1}.
(iii) 2 := [-1, 1] x [-1,1].

Exercise 1.30 Find the formulas for the projection I7(x; £2) in the following cases:

() 2:={xeR"|(a.x) =b},where0 #a € R"andb e R.
(ii) 2 := {x e R” | Ax = b},where A is an m x n matrix with rank A = m and b € R™.
(iii) £2 is the nonnegative orthant £ := R’..

Exercise 1.31 Fora; < b; withi = 1,...,n, define
2= {x =(x1,...,x,) €R" | a; <x <b; forall i = ln}
Show that the projection IT(x; §2) has the following representation:

I(x;2) = {u = (uy,....uy) €R” | u; = max{a;, min{b, x;}} for i € {1,...,n}}.




A Standard material on convexity

Definition A.1 A set S in R” is said to be convez if for every x1, 22 € S the line
segment {Az1 + (1 — N)zg : 0 < A < 1} belongs to S.

For instance, a hyperplane S = {z € R" : p'z = a} oraball S = {z € R" : |z — x| <
[} are examples of convex sets. However, the sphere S = {x € R" : |x — x| = [}
provides an example of a set that is not convex (§ > 0). It is easy to see that
arbitrary intersections of convex sets are again convex; also finite sums of convex sets
are convex again.

Theorem A.2 (strict point-set separation [1, Thm. 2.4.4]) Let S be a nonempty
closed convex subset of R™ and let y € R"\S. Then there exists p € R", p # 0, such
that

supp'z < ply.
zes
PROOF. It is a standard result that there exists & € S such that sup,.g |y — s| =
|y — | (consider a suitable closed ball around y and apply the theorem of Weierstrass
[1, Thm. 2.3.1]). By convexity of S, this means that for every z € S and every
A€ (0,1]
ly — o+ (1= N2))* = |y — 2

Obviously, the expression on the left equals
ly—i— Mo —2)]" =y — 2" = 2My — 2)"(z — &) + Nz — 2],
so the above inequality amounts to
20y — 2)(z — 2) < Nz — 3

for every x € S and every A € (0, 1]. Dividing by A > 0 and letting A go to zero then
gives
(y—x) - (x—xz)<O0forall z eS.

Set p := y — &; then p # 0 (note that p = 0 would imply y € S). We clearly have
plx < pte. Also, we have now p'd > p'y, for otherwise (y — 2)'(Z — y) > 0 would
imply y = 2 € S, which is impossible. QED

For our next result, recall that 95 := clS N cl(R™\S) = clS\int S denotes the
boundary of a set S C R™.

Theorem A.3 (supporting hyperplane [1, Thm. 2.4.7]) Let S be a nonempty
convex subset of R™ and let y € 0S. Then there exists ¢ € R, q # 0, such that

sup ¢'z < q'y.
zecl S

In geometric terms, H := {x € R" : ¢'x = q¢'y} is said to be a supporting hyperplane
for S at y: the hyperplane H contains the point y and the set S (as well as cl S) is
contained the halfspace {x € R™ : p'z < p'y}.
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PROOF. Let Z :=cl S; then 0S C 0Z (exercise). Of course, Z is closed and it is
easy to show that Z is convex (use limit arguments). So there exists a sequence (yy)
in R™\ Z such that y;, — y. By Theorem A.2 there exists for every k a nonzero vector
pr € R™ such that

t t
Sup prt < PrY-
reZ

Division by |py| turns this into

t t
Sup q;,* < Yk,
T€Z

where qx, := pi/|px| belongs to the unit sphere of R™. This sphere is compact (Bolzano-
Weierstrass theorem), so we can suppose without loss of generality that (gx) converges
to some ¢, |¢| =1 (so ¢ is nonzero). Now for every x € Z the inequality ¢l < ¢}y,
which holds for all &, implies

¢'r = limgr <limgy, = q'y,
and the proof is finished. QED

Theorem A.4 (set-set separation [1, Thm. 2.4.8]) Let Sy, Sy be two nonempty
convex sets in R™ such that S; N Sy = (0. Then there exist p € R", p#0, and o € R
such that

sup p'r < o < inf ply.

z€ST YES2
In geometric terms, H := {x € R" : p'x = a} is said to be a separating hyperplane
for S1 and Sy: each of the two convex sets is contained in precisely one of the two
halfspaces {x € R™ : p'x < a} and {x € R™ : p'x > a}.

PROOF. It is easy to see that S := 57 — S5 is convex. Now 0 ¢ S, for otherwise
we get an immediate contradiction to Sy N Sy = 0. W distinguish now two cases: (i)
0eclSand (ii) 0clS.

In case (i) we have 0 € S, so by Theorem A.3 we then have the existence of a
nonzero p € R"™ such that

p'z <0 for every z € S = S; — S, (2)

i.e., for every z = v —y, with x € S} and y € S,. This gives p'x < p'y for all z € S}
and y € Ss, whence the result.

In case (i) we apply Theorem A.2 to get immediately (2) as well. The result
follows just as in case (7). QED
Theorem A.5 (strong set-set separation [1, Thm. 2.4.10]) Let Si, Sy be two

nonempty closed convex sets in R™ such that S; NSy = 0 and such that Sy is bounded.
Then there exist p € R", p £ 0, and a € R, 8 € R such that

sup p'lr < o < B < inf ply.

€S yeS2

PROOF. As in the previous proof, it is easy to see that S := S; — S5 is convex.
Now S is also seen to be closed (exercise). As in the previous proof, we have 0 & S.
We can now apply Theorem A.2 to get the desired result, just as in case (i7) of the
previous proof. QED
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B Fenchel conjugation

Definition B.1 For a function f : R" — (—o0, +00] the (Fenchel) conjugate function
of fis f*: R™ — [—o00, +00], given by
f7(§) = sup [€'z — f(z)].
reR™

By repeating the conjugation operation one also defines the (Fenchel) biconjugate of
f, which is simply given by f** := (f*)*.

Example B.2 Consider f: R — R, given by

xlogx ifx >0,
f(z) = 0 if x =0,
+oo ifx <.

Observe that this function is convex. Then (counting 0log0 as 0) we clearly have
f5(€) = sup,~o &xr — xlogx for the conjugate. For an interior maximum in Ry (by
concavity of the function to be maximized) the necessary and sufficient condition is
§—logz—1=0,1ie., x=-exp({—1), which gives the value {éx — zlogz = exp(§ —1).
Since this value is positive, we conclude that the point z = 0 stands no chance for the
maximum, i.e., the maximum is always interior, as calculated above, giving f*(¢) =
exp(€—1) for the conjugate function. We can also determine the biconjugate function:
by definition, f**(x) = supgcg 2§ — exp(§ — 1). If x < 0, then, by exp({ —1) — 0
as { — —oo, the supremum value is clearly +oo. Hence, f**(x) = 400 for x < 0.
If x > 0, then setting the derivative of the concave function £ — z€ — exp(§ — 1)
equal to zero gives a solution (whence a global maximum) for £ = logx + 1. Hence
f*(x) = xloga for > 0. Finally, if 2 = 0, then the supremum of —exp(§ — 1) is
clearly the limit value 0. So f**(0) = 0. We conclude that f** = f in this example.
The Fenchel-Moreau theorem below will support this observation.

Exercise B.1 Determine for each of the following functions f the conjugate function
f* and verify also explicitly if f = f** holds.

a. f(z) =az*+br+c,a>0,

b. f(x) = |z + [z — 1],

c. f(z)=2a"/afor x >0 and f(z) = +oo for x < 0 (here a > 1).

d. f = xB, where B is the closed unit ball in R™.

Example B.3 Let K be a nonempty convex cone in R™ (recall that a cone (at zero)
is a set such that ax € K for every @ > 0 and x € K; cf. Definition 2.5.1 in [1]). Let
f :=xk. Then

f(§) =sup¢'az =

zeK

Recall here that K*, the polar cone of K, is defined by K* := {£ € R" : 'z <
0 for all z € K'}. Hence, we conclude that (yx)* = xk-+.

Denote the closure of K by K. We also observe that ¢ € dx(0) is equivalent to
Etx <0 forall z € K, ie., to 'z <0 forall z € K, ie., to £ € K*.

{ 0 ifée K*,

+o00  otherwise.
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Proposition B.4 Let f, g : R" — (—o0, +0].
(¢) If f = g then f* < g".
(12) If f*(x) = —o0 for some x € R™, then f = 4o0.
(1ii) For every xq, £ € R"

(&) > &ao — f(mo) (Young’s inequality).

() f> f.
(v) For every xo, £ € R"

f5(&) = &'xo — f(wo) if and only if & € Of (wo).
Exercise B.2 Give a proof of Proposition B.4.
Theorem B.5 (Fenchel-Moreau) Let f: R" — (—o0, +0o0] be conver. Then
f(xo) = f™(x0) if and only if [ is lower semicontinuous at xg.

PROOF. One implication is very simple: if f(zo) = f**(z¢), and if z,, — x¢ then
liminf, f(x,) > liminf, f**(z,) by Proposition B.4(iv). Also, liminf, f**(x,) >
f*(xo) because every conjugate, being the supremum of a collection of continuous
functions, is automatically lower semicontinuous. So we conclude that liminf,, f(x,) >
f*(xo) = f(xo), i.e., f is lower semicontinuous at x.

In the converse direction, by Proposition B.4(iv) it is enough to prove f**(zq) > r
for an arbitrary r < f(x¢), both when f(zg) < 400 and when f(zg) = +o0.

Case 1: f(xg) < 4o00. It is easy to check that C' :=epi f := {(z,7r) e R" xR :
r > f(x)}, the epigraph of f, is a convex set in R"™! (this is Theorem 3.2.2 in [1] — as
can be seen immediately from its proof, it continues to hold for functions with values
in (—o0, +00| and we know already that this theorem also holds for sets with empty
interior). Hence, the closure cl C' is also convex. We claim now that (xq,r) ¢ cl C.
For suppose (zg, ) would be the limit of a sequence of points (x,,y,) € C. Then
Yn > f(x,) for each n, and in the limit this would give r > liminf, f(z,) > f(zo) by
lower semicontinuity of f at xy. This contradiction proves that the claim holds. We
may now apply separation [1, Theorem 2.4.10]: there exist & € R and p =: (§, ) #
(0,0), with & € R™ and p € R, such that

Ex+puy < a < g+ pr for all (z,y) € C. (3)

It is clear that p < 0 by the definition of C. Also, it is obvious that p # 0 (just
consider what happens if we take (z,y) = (zo, f(2¢)) in (3) — and we may do this by
virtue of f(zo) € R). Hence, we can divide by —p in (3) and get

Ea— f(x) < &ay—rfor all x € dom f.

Notice that this inequality continues to hold outside dom f as well; thus, f*(&) <
&xg — r, which implies the desired inequality f**(zo) > r.

Case 2a: f = +o0o. In this case, the desired result is trivial, for f* = —o0, so
= +o0.
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Case 2b: f(x1) < 400 for some x1 € R™. We can repeat the proof of Case 1 until
(3). If pu happens to be nonzero, then of course we finish as in Case 1. However, if
=0 we only get

o < a < g for all z € dom f

from (3). We then repeat the full proof of Case 1, but with zy replaced by x; and r
by f(z1) — 1. This gives the existence of £ € R™ such that

& — f(x) <&y — f(xy) + 1 for all # € dom f.
Now for any A > 0, observe that by the two previous inequalities
f(@) > (€ + X&) — a1 + f(z1) — 1 — a for all z € R,
which implies f*(£+ X&) < &'xy — f(x1) + 14 Aa. By definition of f**(xy), this gives
F(w0) = M&o — ) + E'wo — w1 + f(an) — 1,

which implies f**(xg) = +oo, by letting A go to infinity (note that {fzg — a > 0 by
the above). QED

Corollary B.6 (bipolar theorem for cones) Let K be a closed convex cone in
R™. Then K = K™ := (K*)*.

PROOF. Observe that f := xk is a lower semicontinuous convex function. Hence,
f = f by Theorem B.5. By Example B.3 we know that f* = xx+, so f** = yg=
follows by another application of this fact. Hence xx = xg+. QED

Exercise B.3 Prove Farkas’ theorem (see Exercise 3.5) by means of Corollary B.6.

Exercise B.4 Redo Exercise 3.3 by making it a special case of Corollary B.6.
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Definition 2.30  Lef f : R" — R be a convex function and let X € dom f. An element v € R" is
called a SUBGRADIENT of f af X if

(v.x —x) < f(x)— f(x) forall x e R". (2.13)

The collection of all the subgradients of [ af X is called the SUBDIFFERENTIAL of the function af this
point and is denoted by 0f ().



Subdifferential

the subdifferential 0 f(x) of f at x is the set of all subgradients:

af(x)={g] &' (y—x)< f(y) = f(x), Vy € dom f}

Properties

e Jf(x)is aclosed convex set (possibly empty)

this follows from the definition: d f(x) is an intersection of halfspaces

e if x € intdom f then d f(x) is nonempty and bounded

proof on next two pages



Proof: we show that d f(x) is nonempty when x € intdom f

e (x, f(x))is in the boundary of the convex set epi f

therefore there exists a supporting hyperplane to epi f at (x, f(x)):

T
vy | X
1711 16

e h > () gives a contradiction as t — oo

a

3(a, b) # 0. [E?

)50 V(y.7) € epi f

e h = ( gives a contradiction for y = x + ea with small € > 0

therefore b < Oand g = “—a is a subgradient of f at x
)



Proof: d f(x) is bounded when x € intdom f

e for small r > 0, define a set of 2n points
B={xxre |k=1,....,n} cdomf
and define M = max f(y) < oo

veb

e for every g € df(x), there is a point y € B with

rllgllo = g (v — x)

2llco, and take y = x + r sign(gy )ey)

(choose an index k with |gg| = |

e since g is a subgradient, this implies that

f)+rllgle = f)+g"(y=x)< F() <M

e we conclude that d f(x) is bounded:

1]l < M_}—f(l) forall g € 9 f(x)



Definition2.34  Wesaythat f . R" — R is (Frécher) DIFFERENTIABLE a7 X € int(dom f) if there

exists an element v € R" such that

i )= fE) — (v x —X)

= 0.
X—X |x — X||

In this case the element v is uniguely defined and is denoted by V f(X) := v.



Proposition 2.35  Ler f : R” — R be convex and let X € dom f. Then f attains its local/global
minimum at X if and only if 0 € 9f (X).
Proof. Suppose that f attains its global minimum at x. Then
f(x) < f(x) forall x € R”,
which can be rewritten as
0=(0.x—Xx) < f(x)— f(x) forall x e R".

'The definition of the subdifferential shows that this is equivalent to 0 € 3f(x). O



Now we show that the subdifferential (2.13) is indeed a singleton for differentiable func-
tions reducing to the classical derivative/gradient at the reference point and claritying the notion
of differentiability in the case of convex functions.

Proposition2.36  Let f : R" — R be convex and differentiable at x € int(dom f). Then we have
f(x) = {V f(X)} and
(Vf(X),x —X) < f(x)— f(X) forall x € R". (2.17)



Proposition2.36  Ler f : R" — R be convex and differentiable at X € int(dom f'). Then we have
Af (x) = {Vf(x)} and
(VIX).x —x) < f(x)— f(X) forall x e R". (2.17)

Proof. It follows from the differentiability of f at x that for any € > 0 there is § > 0 with
—€llx —x|| = f(x) = f(x) = (Vf(x),x —X) < €|lx — x| whenever [x —x| <4§. (2.18)
Consider further the convex function
p(x) = f(x)— f(X) —(Vf(x).x —x) +e|x —x[, xeR",

and observe that ¢(x) > ¢(¥) = 0 for all x € IB(x;6). The convexity of ¢ ensures that ¢(x) >
@(x) for all x € R”. Thus

(VI(x).x —X) < f(x)— f(xX)+ €|]|x — xX|| whenever x € R”,

which yields (2.17) by letting € | 0.
It follows from (2.17) that V f(x) € df(x). Picking now v € df(x), we get

(v,x —x) < f(x)— f().
'Then the second part of (2.18) gives us that
(v—V f(x),x —Xx) < €||lx —x| whenever |[x —x| < é.

Finally, we observe that |[v — V f(X)| < €, which yields v = V f(x) since € > 0 was chosen ar-

bitrarily. Thus af(x) = {V f(x)}. O]



Example 2.38 Let p(x) := ||x| be the Euclidean norm function on R”. Then we have

IB if x =0,
) = {i} otherwise.
x|
To verity this, observe first that the Euclidean norm function p is differentiable at any nonzero
point with Vp(x) = ﬁ asx # 0. It remains to calculate its subdifterential at x = 0. To proceed

by definition (2.13), we have that v € dp(0) if and only if
(v,x) = (v.,x —0) < p(x)— p(0) = ||x]|| forall x e R".

Letting x = v gives us (v, v) < ||v||, which implies that ||v|| < I, i.e., v € IB. Now take v € IB
and deduce from the Cauchy-Schwarz inequality that

(v.x = 0) = (v.x) < o[- [lx]| = [[x[| = p(x) = p(0) forall x € R"

and thus v € dp(0), which shows that dp(0) = IB.



Theorem2.40 Let f : R” — R be a differentiable function on its domain D, which is an open
convex set. Then f is convex it and only if

(VIf(u),x—u) < f(x)— f(u) forall x,u € D. (2.21)

Proof. The “only if” part follows from Proposition 2.36. To justify the converse, suppose that
(2.21) holds and then fixany xy,x2 € D and ¢ € (0, 1). Denoting x; := tx; + (1 —7)x2, we have
x; € D by the convexity of D. Then

(Vi) x1—x:) = fx) = fxo), (V(xe).x2—x0) < fx2) = f(x2).

It follows furthermore that

tH(VI(x), x1—x;) <tf(x))—1f(x;) and
(I =)V f(xe).x2—x0) = (1—1) f(x2) = (1 = 1) f(xp).

Summing up these inequalities, we arrive at

0=<tf(x1)+(1—1)f(x2)— f(x1).

which ensures that f(x;) < tf(x1) + (1 — 1) f(x2), and so verifies the convexity of f. O



Moreau-Rockafellar theorem

Corollary 2.45  Let f; : R" - R for i = 1,2 be convex functions such that there exists u €
dom f) Ndom f; for which f is continuous at u or f5 is continuous at u. Then

A(f1 + f2)(x) = df1(x) + dfa(x) (2.28)

whenever x € dom f; N dom f,. Consequently, if both functions f; are finite-valued on R", then the
sum rule (2.28) holds for all x € R”.



Theorem 2.9 (Moreau-Rockafellar) Let f.g: R* — (—oc, +00| be convex func-
tions. Then for every ro € R"

Of(xg) + dgl(xg) C O(f + g)(x0).

Moreover, suppose that int dom f Ndom g # ). Then for every xqg € R™ also

A(f + g)(ro) C If(xo) + Ig(x0).



PROOF. The proof of the first part is elementary: Let & € 0f(xp) and & € Og(xo).
Then for all z € R"

f(x) = fxo) + & (z — 20), g(x) = g(xo) + &(z — x0),

so addition gives f(x) + g(x) = f(xo) + g(xo) + (& + &)'(x — x). Hence & + & €

I(f + g)(zo).
To prove the second part, let £ € I(f + g)(xy). First, observe that f(zg) = 400

mplies (f + g)(z9) = +00, whence f + g = 400, which 1s impossible by £ € J(f +
g)(xp). Likewise, g(xg) = 400 is impossible. Hence, from now on we know that both
f(zo) and g(xg) belong to R. We form the following two sets in R+

Ap={(xz—z0,y) eER" xR:y > f(x) - f(x0) — &' (z — 70)}

ANy ={(z—z0.y) : —y = g(x) — g(x0) }.



Ap={(r =z, y) ER" xR:y > f(x) — fzo) — &' (x — 20)}

Ay ={(z—z0.y) : —y = g(x) — g(x0) }.

Observe that both sets are nonempty and convex (see Exercise 2.8), and that Ay M
A, = 0 (the latter follows from & € O(f + g)(xo)). Hence, by the set-set-separation
Theorem A.4, there exists (&, 1) € R and a € R, (&. i) # (0,0), such that

Eolr — xg) + py < a for all (z,y) with y > f(z) — f(zg) — &z — x).

fa(i-' — xg) + py > « for all (gr:,-y) with —y > g(a:) _ Q‘(;l-‘o).

By (0.0) € A; we get o < 0. But also (0,€) € Ay for every € > 0, and this gives
pe < o, so o < 0 (take € = 1). In the limit, for € — 0, we find o > 0. Hence o = 0
and p < 0. We now claim that g = 0 1s impossible. Indeed, 1f one had g = 0, then
the first of the above two 1mequalities would give

58(3: — x9) < 0 for all (z,y) with y > f(z) — f(xo) — &z — x9),



which 1s equivalent to
E(x —x0) <0 for all » € dom f

(simply note that when f(z) < 4+o00 one can always achieve y > f(x) — f(xg) — &' (x —
xg) by choosing y sufficiently large). Likewise, the second inequality would give

Eo(x —ax9) = 0 for all x € dom g.

In particular, for = as above this would imply (7 — 29) = 0. But since 7 lies in the
interior of dom f (so for some 0 > 0 the ball Ns(z) belongs to dom f), the preceding
would 1mmply

Eou=EHT +u— xz0) <0 for all u € Ns(0).

Clearly, this would give £y = 0 (take u := 0£p/2), which would be in contradiction to
(€0, pt) # (0,0). Hence, we conclude g < 0. Dividing the separation inequalities by
— i and setting &y := —&p/pt, this results in

fé(:ﬂ —z9) <y for all (z,y) with y > f(x) — f(xo) — (x — x0),

& (x — xz0) > y for all (z,y) with —y > g(x) — g(x0).

The last inequality gives —&o € Ag(xo) (set y := g(xo) — g()) and the one but last
nequality gives { +&p € df(xo) (take y := f(x) — f(xo) — &z —x0)+eandlet e | 0).
Since § = (£ + &) — &p, this finishes the proof. QED



As a precursor to the Karush-Kuhn-Tucker theorem. we have now the following
application of the Moreau-Rockafellar theorem.

Theorem 2.10 Let f: R™ — R be a convex function and let S C R™ be a nonempty
conver set. Consider the optimization problem

(P) inf f(x).

resS

Then = € S 1is an optimal solution of (P) if and only if there exists a subgradient

£ € 0f(x) such that

E(x—=7) >0 forallz e S. (1)



Proor. Recall from Definition 2.3 that yg 1s the mdicator function of S. Now
let ¥ € S be arbitrary. Then the following i1s trivial: = 1s an optimal solution of (P)
if and only 1if

0€d(f+xs)(T).

By the Moreau-Rockafellar Theorem 2.9, we have

O(f + xs)(x) = Df (2) + Ixs(2).

To see that 1ts conditions hold. observe that dom f = R" and dom yg = 5. So it
follows that z 1s an optimal solution of (P) if and only if 0 € 90f(z) + d\s(Z). By
the definition of the sum of two sets this means that z is an optimal solution of (P)
if and only if 0 = & + &’ for some & € Of(z) and & € Ovs(Z). Of course, the former
means & = —&, so —& € dy s(7), which is equivalent to

xs(z) > xs(Z) + (=&)*(z — 7) for all z € R™,
Le., to (1). QED



Definition 2.13 The directional derivative of a convex function f : R" — (—o0, +o0]
at the point xp € dom/f in the direction d € R™ 1s defined as

e f o+ Ad) — f(xo)
f(wo:d) := lin < *

The above limit is a well-defined number in |—oc, +oc|. This follows from the fol-
lowing proposition (why?), which shows that the difference quotients of a convex
functions possess a monotonicity property:



Proposition 2.14 Let f : R" — (—oc, +0| be a convex function and let x¢ be a
point in domf. Then for every direction d € R" and every A. Ao € R such that
Ao > A\ > 0 we have

f(xo 4+ Md) — f(x) - f(xg + Aod) — f(x9)

)\1 B )\2
ProoF. Note that
A A
0+ Ad = = (0 + Aod) + (1— .
}\2 }\2
So by convexity of f
)\1 )‘\1
f(;l.‘[] + )\1d) < )k—gf(;l.‘g + )\gd) + '(1 — )\_Q)f(TD)

Simple algebra shows that this 1s equivalent to the desired mequality. QED



Theorem 2.15 Let f : R" — (—o0, +0c] be a convex function and let xy be a point
in it dom f. Then

f(xo:d) = sup &'d for every d € R™.
£€0f(zo)



ProOOF oF THEOREM 2.15. By Proposition 2.14

q(d) == f'(xo;d) := lim f(zo + Ad) = f(zo) = mf f(zo +Ad) - f(:r-g)*

AL0 A A0 A

Since the pomtwise limit of a sequence of convex functions 1s convex, 1t follows that
q : R™ — R is convex (by the infimum expression for ¢(d) the fact that 9 € int dom f
nnplies automatically ¢(d) < +oc for every d; also, q(d) > —oc for every d, because
of the nonemptiness part of Lemma 2.16). Hence. ¢ 1s continuous at every point
d € R™ (apply the continuity part of Lemma 2.16). So by the Fenchel-Moreau theorem
(Theorem B.5 in the Appendix) we have for every d

q(d) = ¢**(d) := sup[d"¢ — ¢*(§)].

Ee]RTL

Let us calculate ¢*. For any £ € R™ we have

7*(€) == sup [td—q(d)] = sup [¢ta—T 0T ”‘i) —J@0)) _ qupsupleta_ Lot Ai) — f(x0)
deln d,A=0 A>0 d

]



by the above infimum expression for ¢(d). Fix A > 0; then z := x5+ Ad runs through
all of R™ as d runs through R™. Hence

f(xo 4+ Ad) — f(-’l'-*n)] _ f(xg) — &xg +sup, |2 — f(2)]
A A .

sup[¢fd —
d

Clearly. this gives

fxo) — &g+ f*(€) { 0 if £ € df(xo)

= & I L
q = sup — :
() A::-ID A +oo  otherwise

where we use Proposition B.4(v). Observe that in terms of the indicator function
of the subdifferential this can be rewritten as ¢ = Xaf(z,). Now that ¢* has been
calculated. we conclude from the above that for every d € R"

f(wo:d) = q(d) = ¢"*(d) = Xpf(a)(d) = sup &'d.
g€ f(xo)

which proves the result. QED



Proposition 2.54  Letr fi:R" = R, i = 1,....m, be convex functions. Take any point X €
m . ) _ )
(i—, dom fi and assume that each f; is continuous at X. Then we have the maximum rule

d( max f;)(X) = co U afi (x).

iel(X)



Theorem 2.17 (Dubovitskii-Milyutin) Let f1, -, f,, : R" — (—oc, 40| be con-
vex functions and let zo be a point in N ;int dom f;. Let f : R® — (—oc, +oc] be
given by

f(z) := max f;(z)

1<i<m

and let I(xg) be the (nonempty) set of all i € {1,---,m} for which fi(xo) = f(x0).
Then

af(i.'[}) — CO Uz’EI{In} C)fi(TD)



PRrROOF. For our convenience we write I := I(zg). To begin with, observe that
£ € Ofi(xg) easily implies £ € df(xg) for each 7 € I. Since df(xg) 1s evidently
convex, the mclusion " D7 follows with ease. To prove the opposite inclusion, let &
be arbitrary in df(xg). If § were not to belong to the compact set co U;er dfi(x0).
then we could separate strictly (note that each set df;(xq) 1s both closed and compact
(exercise)): by Theorem A.2 there would exist d € R™ and a € R such that

&d > a>max sup E'd=max f](rg:d).
i€l gcofi(xo) iel

where the final identity follows from Theorem 2.15. But now observe that

oY T filwo + Ad) — fi(xo) _ .. filwo+Ad) — fi(zo) .0
Flrord) = Rip ey ) e ) B

so the above gives &{d > f'(zg:d). On the other hand, by & € df(xg) it follows that
flxg + Ad) = f(xzg) + Ad for every A > 0, whence f'(xg;d) > &hd. We thus have
arrived at a contradiction. So the mclusion "C” must hold as well. QED



Directional derivative

Definition (for general f): the directional derivative of f at x in the direction vy is

f(xzy) = lim fx +ay) - f(x)

a0 @

= rIim (r(f(.r + %1) — rf(.x'})
(if the limit exists)

e f’(x:y)istheright derivative of g(a) = f(x + ay)ata =0
e f’(x:v)is homogeneous in y:

f(xidy)y=Af"(x:y) fora>0



Directional derivative of a convex function

Equivalent definition (for convex f). replace lim with inf

e St ay) - fx)

fley) = a>0 @
= ;Eitl tf(x + ?_‘i)_ rf(‘)

Proof
e the function i(y) = f(x + v)— f(x)is convex in y, with 2(0) = 0

e its perspective th(y/t) is nonincreasing in t (ECE236B ex. A2.5); hence

f'(xiy) = lim th(y/f) = infth(y/1)
. f—00 ’ =) .



Properties

consequences of the expressions (for convex f)

- f(x+ay)— f(x)

a>0 0

Y SR O B .
= :25 ff{.l—l-?}) ff(x)

fiy) =

e f’(x:y)Iisconvexin y (partial minimization of a convex function in vy, )
e f’(x:y)defines alower bound on f in the direction y:

f(x+ay)= f(x)+af'(x:y) foralla =0



Directional derivative and subgradients

for convex f and x € intdom f

fiy)= sup gy
g€d f(x)

f'(x:y) is support function of d f(x)

e generalizes f’(x:y) = V f(x)!y for differentiable functions

e implies that f(x: y) exists for all x € intdom f, all v (see page 2.4)



Proof: if g € d f(x) then from page 2.29

. T £l
f'(x:y) > inf flx) +ag'y - fix) =gly
a>() 0

it remains to show that f’(x; y) = ¢’y for at least one g € 3 f(x)
e f’(x:v)is convexin y with domain R", hence subdifferentiable at all y
e let ¢ be a subgradient of f’(x: y) at y: then forall v, 4 > 0,
Af (xz0) = f/(x:A0) > f(x:y) + 81 (o —y)
e taking A — oo shows that f'(x:v) > g?Tu; from the lower bound on page 2.30,

fx+0)= f()+ f'(x:0) = f(x)+ g0 forallv
hence ¢ € df(x)

e taking 1 = 0 we see that f/(x;y) < ¢’y



2.8. FENCHEL CONJUGATES 77
. . .. .
. )
Proof. Taking §21 C §2 as in the proposition, for any v € R” we have

02,(v) =sup {(v,x) | x € 21} <sup{(v.x) | x € 2,} = 0, (v).

Conversely, suppose that o, (v) < 0, (v) whenever v € R". Since 0, (0) = 0,(0) = 0, it fol-
lows from definition (2.13) of the subdifferential that

30’91 (0) C 80’92 (0),

which yields £2; C £2, by formula (2.44). O

2.8 FENCHEL CONJUGATES

Many important issues of convex analysis and its applications (in particular, to optimization) are
based on duality. The following notion plays a crucial role in duality considerations.

Definition 2.70 ~ Given a function f : R" — R (not necessarily convex), its FENCHEL CONJUGATE
f*:R" - [—00,00] is

F*() :=sup {(v.x) — f(x) ’ x € R"} =sup {{v,x) — f(x) | x € dom f}. (2.45)

Note that f*(v) = —oo is allowed in (2.45) while f*(v) > —oco forallv € R” ifdom f #
@. It follows directly from the definitions that for any nonempty set £2 C R” the conjugate to its
indicator function is the support function of £2:

§o() =sup{(v.x) | x € 2} =0p(v), veR. (2.46)

'The next two propositions can be easily verified.

Proposition 2.71 Let f :R" - R bea Sfunction, not necessarily convex, with dom f # 0. Then
its Fenchel conjugate [* is convex on R".

Proof. Function (2.45) is convex as the supremum of a family of affine functions. O
Proposition 2.72  Let f,g: R" — R be such that f(x) < g(x) for all x € R". Then we have
f*() = g*(v) forallv € R".
Proof. For any fixed v € R”, it follows from (2.45) that
(v.x) = f(x) = (v.x) —g(x), xeR".

This readily implies the relationships

£*) = sup {{v.x) = £(x) | x € R} = sup {{v, x) — g(x) | x € R"} = g*(v)
for all v € R”, and therefore /* > g* on R". O




78 2. SUBDIFFERENTIAL CALCULUS

/ —f*(v) = inf{ f(z) — vz | z € R}

L(z) = vz

Figure 2.8: Fenchel conjugate.

The following two examples illustrate the calculation of conjugate functions.

Example2.73 (i) Givena € R" and b € R, consider the affine function
f(x):=({a,x)+b, xeR".
'Then it can be seen directly from the definition that

—b ifv=a,

oo otherwise.

[ =

(ii) Given any p > 1, consider the power function

p
X .
— ifx >0,

Jx)=4qr

oo otherwise.

For any v € R, the conjugate of this function is given by
" x? . (xP
f (v)-sup{vx—; ’xiO} ——mf{7—vx ‘xz()}.

It is clear that f*(v) = 0 if v < 0 since in this case vx — p~!x? < 0 when x > 0. Considering

the case of v > 0, we see that function ¥, (x) := p~'x? — vx is convex and differentiable on
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(0, 00) with ¥} (x) = x?~' —v. Thus ¥/ (x) = 0 if and only if x = v'/»~V and so ¥, attains
its minimum at x = v/ ®~D_ Therefore, the conjugate function is calculated by

1
f*@) = (1 - ;)vz’/@*l), v EeR".

Taking ¢ from ¢!

= 1— p~!, we express the conjugate function as

0 ifv <0,
Fr) = w

otherwise.
q

Note that the calculation in Example 2.73(ii) shows that

x? e
vx < — + — forany x,v > 0.
p

The first assertion of the next proposition demonstrates that such a relationship in a more general
setting. To formulate the second assertion below, we define the biconjugate of f as the conjugate

of f*,ie, f*(x) := (f*)*(x).

Proposition2.74 Let f :R" - R bea function with dom f # @. Then we have:

@) (v,x) < f(x)+ f*(v) forall x,veR".
(i) f**(x) < f(x) forall x € R".

Proof. Observe first that (i) is obvious if f(x) = oo. If x € dom f, we get from (2.45) that
f*() = (v, x) — f(x), which verifies (i). It implies in turn that

sup {(v.x) — f*(v) |[veR"} < f(x) forall x,v e R",
which thus verifies (ii) and completes the proof. O

The following important result reveals a close relationship between subgradients and
Fenchel conjugates of convex functions.

Theorem 2.75  For any convex function f : R” — R and any % € dom f, we have that v €
df(x) if and only if

S+ fF(v) = (v. %), (2.47)
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Proof. Taking any v € df(X) and using definition (2.13) gives us

F(X) + (v,x) — f(x) < {(v,X%) forall x € R".
'This readily implies the inequality
fGE) + () = f(&) +sup{(v.x) - f(x) | x e R"} < (v, %).

Since the opposite inequality holds by Proposition 2.74(i), we arrive at (2.47).
Conversely, suppose that f(X) + f*(v) = (v, X). Applying Proposition 2.74(i), we get the
estimate f*(v) > (v, x) — f(x) for every x € R". This shows that v € If(X). O

The result obtained allows us to find conditions ensuring that the biconjugate f** of a
convex function agrees with the function itself.

Proposition2.76  Ler X € dom f for a convex function f:R" — R. Suppose that 0f (X) # 9. Then
we have the equality f**(X) = f(X).

Proof. By Proposition 2.74(ii) it suffices to verify the opposite inequality therein. Fix v € 9f(X)
and get (v, X) = f(X) + f*(v) by the preceding theorem. This shows that

@) = (v.3) = f*(v) =sup{(F.0) = f*(v) [veR" } = f™(3).
which completes the proof of this proposition. O
Taking into account Proposition 2.47, we arrive at the following corollary.
Corollary 2.77  Let f : R" — R be a convex function and let X € int(dom f'). Then we have the
equality f**(X) = f(X).
Finally in this section, we prove a necessary and sufficient condition for the validity of the

biconjugacy equality f = f** known as the Fenchel-Moreau theorem.

Theorem2.78 Let f : R” — R be a function with dom f # @ and let A be the set of all affine
functions of the form ¢(x) = (a, x) + b for x € R”, where a € R” and b € R. Denote

A(f) = 1o G.A‘go(x) < f(x) forall x e R"}.

Then A(f) # @ whenever epi f is closed and convex. Moreover, the following are equivalent:

(i) epi f is closed and convex.

(ii) f(x) = sup,e 4( ) (x) forall x € R™.
(iii) /**(x) = f(x) for all x € R".
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Proof. Let us first show that A(f) # 0. Fix any xo € dom f and choose ¢ < f(x¢). Then
(x0,A0) ¢ epi f. By Proposition 2.1, there exist (v, 7) € R” xR and € > 0 such that

(0, x) + A < (0, x0) + YAo — € whenever (x,A) € epi f. (2.48)
Since (x9, f(x0) + @) € epi f forall @ > 0, we get
P(f(X) + @) < yAo — € whenever a > 0.

This implies < 0 since if not, we can let @ — oo and arrive at a contradiction. For any x €

dom f, it follows from (2.48) as (x, f(x)) € epi f that
(0,x) +7f(x) < (D, x0) + 7Ao — € forall x € dom f.
This allows us to conclude that

J(x) >

,xo—x)+ko—§ if x € dom f.

<i| <

Define now ¢(x) := (%,xo —Xx)+ Ao — %.'Ihengo € A(f),and so A(f) # 0.

Let us next prove that (i)=(ii). By definition we need to show that for any Ao < f(x¢)
there is ¢ € A(f) such that ¢ < @(x¢). Since (x9,Ao) & epi f, we apply again Proposition 2.1
to obtain (2.48). In the case where xo € dom f, it was proved above that ¢ € A(f). Moreover,

we have ¢(x9) = Ag — i < Ag since y < 0. Consider now the case where x¢ ¢ dom f. It follows

from (2.48) by taking any x € dom f and letting A — oo that y < 0.If y < 0, we can apply the
same procedure and arrive at the conclusion. Hence we only need to consider the case where
7 = 0. In this case

(0, x —xo) + € <0 whenever x € dom f.

Since A(f) # @, choose @9 € A(f) and define
Ok (x) := @o(x) + k({(v,x —x¢) + €), k e N.

It is obvious that ¢ € A(f) and @k (x0) = @o(x0) + ke > Ag for large k. This justifies (ii).
Let us now verify implication (ii)==(iii). Fixany ¢ € A(f).Then¢ < f,and hence p** < f**.
Applying Proposition 2.76 ensures that ¢ = ¢** < f**. It follows therefore that

f(x) = sup{ga(x) ’ ¢ e A(f)} < f** forevery x € R".

'The opposite inequality f** < f holds by Proposition 2.74(ii), and thus f** = f.
'The last implication (1_11):>(1) is obvious because the set epi g* is always closed and convex
for any function g : R” — R. |
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2.9 DIRECTIONAL DERIVATIVES

Our next topic is directional differentiability of convex functions and its relationships with subdif-
terentiation. In contrast to classical analysis, directional derivative constructions in convex analysis
are one-sided and related to directions with no classical plus-minus symmetry.

Definition 2.79  Let f : R" — R be an extended-real-valued Sfunction and let X € dom f. The
DIRECTIONAL DERIVATIVE of the function [ at the point X in the direction d € R" is the following
limit—if it exists as either a real number or £00:

(2.49)

"(x:d) = i
f(x ) t—1>r(1)1+

S +1d) - f(%)
. .

Note that construction (2.49) is sometimes called the 7igh# directional derivative f at X in
the direction d. Its /eft counterpart is defined by

fE+1d) = £
t

fl(x:d) = lim
=0~

It is easy to see from the definitions that
fl(x:d) =—f'(x:=d) forall d e R",

and thus properties of the left directional derivative f/(X;d) reduce to those of the right one
(2.49), which we study in what follows.

Lemma2.80  Given a convex function f : R" — R with X € dom f and given d € R", define

p(1) == IAS: Hi)_f(j), > 0.

Then the function ¢ is nondecreasing on (0, 00).

Proof. Fix any numbers 0 < #; < , and get the representation

F+nhd= ;—;(x +t2d) + (1 - %)x

It follows from the convexity of f that
- t _ t _
fE+nd) = L E+nd) + (1= 1) F(),
153 5]

which implies in turn the inequality

£+ “ff) SO _ G 12:? IO _ o).

pt) =

This verifies that ¢ is nondecreasing on (0, 00). O
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'The next proposition establishes the directional differentiability of convex functions.

Proposition 2.81  For any convex function f :R" — R and any X € dom f, the directional
derivative f'(X;d) (and hence its left counterpart) exists in every direction d € R". Furthermore,
it admits the representation via the function ¢ is defined in Lemma 2.80:

f'(&:d) = inf(r). d €R"
>

Proof: Lemma 2.80 tells us that the function ¢ is nondecreasing. Thus we have

10+ ¢ Ty

li t) = inf @(1),
lim, ¢(1) = inf (1)
which verifies the results claimed in the proposition. O

Corollary 2.82  If f:R" — Risa convex function, then f'(X;d) is a real number for any X €
int(dom f) andd € R".

Proof. It follows from Theorem 2.29 that f is locally Lipschitz continuous around ¥, i.e., there
is £ > 0 such that

PO < 8L < ) forattsmatt > 0,

t
which shows that | f/(x;d)| < £||d| < oo. O

To establish relationships between directional derivatives and subgradients of general con-
vex functions, we need the following useful observation.

Lemma2.83  For any convex function f : R" — R and % € dom f, we have

f(x:d) < f(x+d)— f(x) whenever d € R".

Proof. Using Lemma 2.80, we have for the function ¢ therein that

(1) < p(1) = f(F +d) - f(%) forall 1 € (0.1),

which justifies the claimed property due to f/(¥;d) = inf;~0 ¢(t) < ¢(1). a

Theorem2.84 Let f : R” — R be convex with ¥ € dom f. The following are equivalent:
@) v € f (x).

(i) (v.d) < f'(x:d) forall d € R".

(iii) /' (x;d) < (v,d) < f'(x;d) forall d € R".
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Proof. Picking any v € 9f(X) and ¢ > 0, we get
(v,td) < f(x +td)— f(X) whenever d € R",

which verifies the implication (i)==(ii) by taking the limit as # — 0T. Assuming now that as-
sertion (ii) holds, we get by Lemma 2.83 that

(v.d) < f'(%:d) < f(G+d)— f(%) forall d € R".

It ensures by definition (2.13) that v € df(x), and thus assertions (i) and (ii) are equivalent.
It is obvious that (iii) yields (ii). Conversely, if (ii) is satisfied, then for d € R” we have
(v,—d) < f'(x;—d), and thus

fl(x:d)=—f"(x;—d) < (v,d) forany d € R".
This justifies the validity of (iii) and completes the proof of the theorem. O

Let us next list some properties of (2.49) as a function of the direction.

Proposition 2.85  For any convex function f : R" — R with % € dom f, we define the directional
Sunction Y(d) == f'(x;d), which satisfies the following properties:

@ v(0) =0.

Gi) v (d1 + d2) = Y(d1) + ¥ (d2) forall dy. d> € R”.

(iii) v (ad) = a¥(d) whenever d € R" anda > 0.

(iv) If furthermore X € int(dom f), then \r is finite on R".

Proof. 1t is straightforward to deduce properties (i)—(iii) directly from definition (2.49). For in-
stance, (ii) is satisfied due to the relationships

f(X +1(di + d2)) — f(X)

V(dy + dp) = lim
t—>0+ 4
X+ 2tdy + X 4+ 2td,

£ : )= £(D)
= lim

O Gt 2dy) - S FG+ 2ds) — £(5)
fg&f“+t; + lim o2 = (d) + ¥ (da).

Thus it remains to check that ¥ (d) is finite for every d € R” when x € int(dom f'). To proceed,
choose @ > 0 so small that ¥ + ad € dom f. It follows from Lemma 2.83 that

Y(ad) = f'(%;ad) < f(X +ad) — f(X) < co.
Employing (iii) gives us ¥ (d) < co. Further, we have from (i) and (ii) that
0=y = y(d +(-d) < y(d) + y(~d), d <R,
which implies that ¥/ (d) > —y(—d). This yields ¥ (d) > —oo and so verifies (iv). O
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To derive the second major result of this section, yet another lemma is needed.

Lemma 2.86  We have the following relationships between a convex function f:R" — R and the
directional function \ defined in Proposition 2.85:

(@) af (x) = 9y (0).
(ii) v *(v) = 8o (v) for allv € R", where 2 := 3y (0).

Proof- 1t follows from Theorem 2.84 that v € (%) if and only if
(v.d —=0) = (v.d) < f'(&:d) = y(d) = ¥(d) =¥ (0). deR".

This is equivalent to v € 9y (0), and hence (i) holds.
To justify (ii), let us first show that ¥ *(v) = 0 for all v € £2 = 9y (0). Indeed, we have

(@) = sup {{v.d) — ¥(d) | d €R"} = (v.0) — ¥(0) = 0.
Picking now any v € 9y (0) gives us
(v.d) = (v.d —0) < Y(d) ~¥(0) = ¥(d). d €R".
which implies therefore that
Y*() =sup {(v.d) —y(d) | d €R"} <0

and so ensures the validity of ¢ *(v) = 0 for any v € 9y (0).
It remains to verify that ¥ *(v) = oo if v ¢ ¥ (0). For such an element v, find dy € R”
with (v, do) > ¥ (dp). Since ¥ is positively homogeneous by Proposition 2.85, it follows that

Y (v) = sup{(v.d) —¥(d) | d € R" } = sup((v,1do) — Y (tdp))

t>0
= sup((v, do) — ¥ (do)) = o0,
>0
which completes the proof of the lemma. O

Now we are ready establish a major relationship between the directional derivative and the
subdifferential of an arbitrary convex function.

Theorem 2.87  Given a convex function f : R” — R and a point % € int(dom f), we have

f'(x:d) = max{{v.d) | v € df(x)} forany d € R".
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Proof. It follows from Proposition 2.76 that

f'(xd) =y (d)=y*™(d), deR"

by the properties of the function ¥ (d) = f'(X;d) from Proposition 2.85. Note that ¥ is a finite
convex function in this setting. Employing now Lemma 2.86 tells us that ¢ *(v) = 6o (v), where
£ = 3y (0) = 3f(%). Hence we have by (2.46) that

Y (d) = 85(d) = sup {(v.d) | v € 2}.

Since the set £2 = df(¥) is compact by Proposition 2.47, we complete the proof. O

2.10 SUBGRADIENTS OF SUPREMUM FUNCTIONS

Let T be a nonempty subset of R? and let g : 7 x R” — R. For convenience, we also use the
notation g;(x) := g(t, x). The supremum function f : R" — R for g; over T is
f(x):=supg(t.x) =supgs(x), xeR". (2.50)
teT teT
If the supremum in (2.50) is attained (this happens, in particular, when the index set 7" is compact
and g(-, x) is continuous), then (2.50) reduces to the maximum function, which can be written in
form (2.35) when T is a finite set.

The main goal of this section is to calculate the subdifferential (2.13) of (2.50) when the
functions g; are convex. Note that in this case the supremum function (2.50) is also convex by
Proposition 1.43. In what follows we assume without mentioning it that #he functions g;: R" — R
are convex forallt € T.

For any point X € R”, define the active index set

S@) = {t e T | g(®) = (D). (2.51)
which may be empty if the supremum in (2.50) is not attained for x = ¥. We first present a simple

lower subdifferential estimate for (2.66).

Proposition 2.88  Lez dom f # @ for the supremum function (2.50) over an arbitrary index set T .
Forany x € dom f, we have the inclusion

cleo | ) dgi(¥) C 3f(%). (2.52)
teS(x)
Proof- Inclusion (2.52) obviously holds if S(X) = @. Supposing now that S(X) # @, fixt € S(x)
and v € 9g;(X). Then we get g;(X) = f(¥) and therefore
(v,x = X) = g1(x) = g¢(X) = g1 (x) = f(¥) = f(x) = f(%),

which shows that v € 9f(X). Since the subgradient set d/(X) is a closed and convex, we conclude
that inclusion (2.52) holds in this case. O



On subdifferential calculus *

Erik J. Balder

1 Introduction

The main purpose of these lectures is to familiarize the student with the basic ingre-
dients of convex analysis, especially its subdifferential calculus. This is done while
moving to a clearly discernible end-goal, the Karush-Kuhn-Tucker theorem, which is
one of the main results of nonlinear programming. Of course, in the present lectures
we have to limit ourselves most of the time to the Karush-Kuhn-Tucker theorem for
conver nonlinear programming. While this is on the one hand restrictive, it is some-
what compensated for by extra structure that the Karush-Kuhn-Tucker theory gains
in the presence of convexity.

The material is presented in the following way. It is assumed that several — but
perhaps not all — students have already been exposed to some standard material on
convex sets. This material has been collected in the appendiz; it will be referred to
during the lectures whenever the need arises. Sometimes further references will be
given; as a rule these concern results that can be found in the textbooks [1] or [2].
The less standard part of the material, notably subdifferential calculus, is treated in
the main part of the text.

2 Fundamental results on subdifferentials

The introduction of 400 and —oo as extended real numbers is an essential, simplifying
ingredient of convex analysis, as we shall see below. The additional arithmetic is
simple, but needs some care. Of course, one has a + (+00) = (+00) + a = 400 for
every a € (—oo, +00]; also, a — (+00) = —oo for every a € [—00, 4+00). Similar rules
for adding/subtracting —oo can easily be gathered. However, neither (4+o00) — (+00)
nor (+00) + (—oo) is defined. This requires constant vigilance on the part of the
reader: for instance, the identity o + 3 = v 4+ (3 can only be used to conclude that
a = for a,y € [—00,+0o0] if # € R. For multiplication the additional rules apply:
a-(400) = 400 for every a € (0, +00] and o (+00) = —o0 for every a € [—00,0). By
definition, one also sets 0- (+00) = 0-(—o0) = 0. As for division, it is consistent with

*LNMB Ph.D. course “Convex Analysis for Optimization”, September, 2010. All rights reserved
by the author. These notes grew from earlier Ph.D. courses in Utrecht and Naples; the author is
indebted to participants in those courses for helpful comments.



the above to have a/(4+00) = a/(—00) = 0 for every o € R, but of course fractions
like (+00)/(4+00), etc. are undefined. Similar warnings hold: for instance, o/ = v/
can only be used to conclude that o = 7 for o,y € [—00,400] if § € R\{0}. Recall
that the definition of a convex set can be found in Appendix A (Definition A.1). We
now introduce a fundamental concept of this course.

Definition 2.1 A function f : S — (—00,400], defined on a convex set S C R", is
said to be conver on S if for every x1, x5 € S and every A € [0, 1]

Jz1 4+ (1= Nw2) < Af(x1) + (1 = A) f(a2).

The same function is said to be strictly convex if for every x1,x9 € S, x1 # o, and
for every X\ € (0,1)

FAzy + (1= Nxg) < Af(z1) + (1 = X) f(22).

This definition does not take into consideration functions that can take the value —oo,
even though it could be expanded to include these.! By a “sign-mirror treatment”
the above definition can be turned into the following: a function f : S — [—o0, +00),
defined on a convex set S C R", is said to be [strictly] concave on S if the function
—f is [strictly] convex, as defined above. Because concave functions can always be
turned into convex ones by changing the signs, this course will not consider concave
functions explicitly.

Exercise 2.1 Prove the following:

a. Every linear® function f(z) := a'z + «, with a € R" and a € R, is a convex
function on R™ (and note that it is also concave).

b. The function f(x) := S|z|? is strictly convex on R™ if 8 > 0 (note that f is strictly
concave if 3 < 0).

c. The function f defined on R, by f(x) :=1/z if x > 0 and by f(0) := 7 can only
be made convex by choosing v = +oc.

d. The function f defined on R by f(z):=1/z if z > 0 and f(z) := 40 if z <0 is
convex.

e. The function f(z) := —+/z is convex on R,.

f. The function f defined on R by f(x) := —y/z if x > 0 and by defining f(x) €
(—00, +00] for z < 0 can only be a convex function if one sets f(x) := +oo for every
x < 0and f(0):=~ with v € [0, +00].

Exercise 2.2 Let S C R™ be a convex set and let f : S — (—o0,400]. Then f is
said to be quasiconver on S if for every o € R the so-called lower level set

Sa:={reS: f(zr)<a}

!Functions that can take the value —oo are called improper in convex analysis. It can be shown
that improper convex functions have a certain “pathological” structure, which is never encountered
in realistic convex optimization problems.

2More accurately, such a function is called affine.



is convex.

a. Prove that if f is convex on .S, then it is also quasiconvex on S.

b. Prove that f is quasiconvex on S if and only if for every a € R the set {z € S :
f(z) < a} is convex.

c. Let g : D — R be a nondecreasing function on an interval D C R with D D f(S5)
(note that this forces f to have values in R). Prove that the composed function
h(z) := g(f(z)) is also quasiconvex on S. Hint: Be careful: the function g is allowed
to have discontinuities.

Exercise 2.3 Prove that the function f(z) := —exp(—z?) is quasiconvex on R, but
not convex on R. Hint: Prove monotonicity properties of f on respectively R, and
R_.

Exercise 2.4 For a function f : S — (—o00, +00] one denotes by argmin, ¢ f(x) the
set (possibly empty) of all minimizers of f on S. That is to say

argmin, e f(r) = {z € 5 f(2) = inf f(2)}.

a. Prove that the set argmin, ¢ f(x) is convex if the function f is quasiconvex on S.
b. Prove that the set argmin, ¢ f(x) contains at most one element if the function f
is strictly convex on S.

Exercise 2.5 Prove the following automatic extension result for the domain of a
convex function: if f : .S — (—o0,400], defined on the convex set S C R™, is convex
on S, then f:R" — (=00, +0oc] is convex on R", where f(x) := f(z) if z € S and
f(z) =40 ifx g s.

Note that this kind of extension has been practiced already in Exercise 2.1d, f above.
As an important consequence of Exercise 2.5, we can often limit ourselves to the
study of convex functions on the full space R™. This standardization can be very
convenient. In the converse direction, we distinguish the subset of R™ on which a
convex function f: R" — (—o0, 00| “really matters” in the following way:

Definition 2.2 The essential domain of a function f : R" — (—o0,+0o0] is the set
dom f, given by
dom f:={x e R": f(x) < +o0}.

It is clear that for every xy € R™ the following equivalence holds: zy € domf if
and only if f(zy) € R. Note also that if f : R — (—o0,400] is a convex function
(see Definition 2.1), then dom f is a convex set (see Definition A.1).

Next, we discuss some methods to create new convex functions from known convex

functions. To begin with, it is easy to see that if fi,..., f,, : R" — (—o0, +0o0] are
convex functions, then so are their pointwise sum f(z) := >"" fi(x) and pointwise
maximum maxj<;<n, fi(z). More generally, if aq, ..., a,, are in R, then the pointwise

sum f(z) := D" o;fi(x) is also a convex function (on R™). Another, more powerful
device to create new convex functions out of known convex functions is composition;
this is the subject of the following two exercises:



Exercise 2.6 Let f : S — R be a convex function on the convex set S and let
g : D — R be a convex function on the convex set D C R, with D D f(S). Suppose
in addition that the function g is also nondecreasing on D (i.e., & < & implies g(&;) <
g(&) for all &,& € D). Demonstrate that the composed function h(z) := g(f(x))
is also convex on S. Prove also that if ¢ is merely nondecreasing (but perhaps not
convex), then h is a quasiconvex function on S.

Exercise 2.7 a. Let f : R" — [0, +00] be convex on R™. Prove that f? is also a
convex function on R".

b. Prove that the function f(x):=1—+/1 — a2 is convex on [—1, +1].

c. Prove that the function f(z) := exp(z?) is convex on R.

Below, in Proposition 2.7, the reader will find another important tool to determine
whether a given function is convex.

Definition 2.3 Given S C R™, consider the following function xg : R" — {0, 400}

(z) = 0 ifexels
XSW= 400 ifz g S.

This function is called the indicator function of the set S.

This definition turns sets into closely related functions. It is easy to see that S C R”
is a convex set if and only if its indicator function yg is a convex function. In a
converse direction, convex functions can also be turned into closely related convex
sets:

Definition 2.4 The epigraph of a function f : R™ — (—o0, +00] is the subset epi f
of R™ x R defined by

epi f:={(z,y) e R" xR : f(z) <y}

Exercise 2.8 Let f : R" — (—o00,+00]. Prove the following: the function f is
convex if and only if its epigraph epi f is a convex subset of R™ x R.

Definition 2.5 a. A subgradient of a function f : R" — (—o0,+o0|, f # +o0, at
the point xy € R" is a vector £ € R" such that

f(@) > f(xo) + & (x — x0) for all x € R™.

The set df(xg) (possibly empty) of all such subgradients is called the subdifferential
of f at the point x3. Observe that this definition is only nontrivial if ¢y € domf: if
xo € R"\dom f, then f(zg) = 400, so df(xy) = 0.

From now on, the trivial function f = 400 is excluded from our considerations.
For convex functions, subgradients form a generalization of the classical notion of
gradient:



Proposition 2.6 Let f : R" — (—o0,+00| be a conver function that is differentiable
at the point xo € int dom f. Then J0f(x¢) = {V f(zo)}.

The proof of this proposition will be given later, because its proof uses Theorem 2.15.
Observe that below this proposition applies to some points in Example 2.9(a) and
also to Example 2.9(b).

Exercise 2.9 a. Consider the function f: R — (—o00, +0o0], defined by
0 if x € [-1,41]
flx)=4q |z| -1 ifze[-2,-1)U(L,2]
+00 if z € (—o0,—2) U (2,400).

Demonstrate that

({0} ifz e (-1,1)
1,00  ifa=-1
0, 1] if o =1
(-1} if v € (—2,—1)

@) =9 [y if z € (1,2)

(—o0,—1] ifx=-2
[1,+o0) ifx=2

| undefined if z € (—o0, —2) U (2, 4+00).

b. Let f: R™ — (—o00,+00] be given by f(x) :=1—+1—2?if z € [-1,+1] and by
f(z) == 400 if £ < —1 or z > 1. Demonstrate that

Of(x) = { éx/M} if v € (—1,+1)

fza<—-lorz>1.

Proposition 2.6 can be used to provide a very useful characterization of convexity
for differentiable functions on R:

Proposition 2.7 (i) Let f : S — R be a differentiable function on the open, convex
set S C R™. Then f is convex on S if and only if the following monotonicity property
holds

(Vf(x1) = Vf(22)) (21 — 22) > 0 for every x1, 29 € S.

(7) Let f : S — R be a differentiable function on the open, convex set S C R".
Then f is strictly convex on S if and only if the following monotonicity property holds

(Vf(x1) — Vf(x2)) (21 — 22) > 0 for every x1,29 € S, 11 # 5.

(17) Let f: S — R be a second order continuously differentiable function on the
open, convex set S C R™. Then f is convexr on S if and only if its Hessian matrix

Hy(z) = <gg@<g)u
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15 positive semidefinite at every point x of S.
(17") Let f: S — R be a second order continuously differentiable function on the
open, convex set S C R™. Then f is strictly convex on S if its Hessian matrix

Hy(x) = (nggg ) i

1s positive definite at every point x of S.

Recall here that an n x n matrix M is positive semidefinite if d*Md > 0 for all d € R".
It is positive definite if d'Md > 0 for all d € R".

PROOF. (7) If f is convex on S, then Proposition 2.6, together with the definition
of subdifferential, implies

flaz) = f(x1) + V(1) (22 — 21) and f(21) > f(x2) + Vf(22) (21 — 72).

This immediately gives the desired monotonicity.

Conversely, given monotonicity, fix z, 2’ in S and let ¢(t) := f(tz' + (1 — t)z”),
t € [0,1]. By the mean value theorem there exists 6 € (0, 1) such that ¢(1) — ¢(0) =
&'(0), ie., f(z')— f(a") = V(@) (2’ —2"), where & := 02’ + (1 — 0)z”. Monotonicity
implies (Vf(2) =V f(2")(Z—2") > 0, i.e,0(Vf(z)—=Vf(z"))(x'’—2") > 0. Hence,
V@) (z —2") > Vfa") (' —2"). Thus, it follows that

f(@") > f(2") + V(") (2 — 2") for every pair 2/, 2" € S.

To prove that this property implies the convexity of f, let z1,29 € S, let A € [0,1]
and set x3 := Az + (1 — A\)zy. By applying the previous property to 2" := 3 and
successively to ' = x1 and 2’ = x5, we obtain

f(x1) > f(xs) + Vf(x3) (21 — 23) and f(xa) > f(x3) + V f(xs)' (z2 — x3).

Multiplying the left hand sides by A and 1 — X respectively, this easily leads to
Af(@1) + (1= A f(x2) = f(as).

(77) The underlying idea is that monotonicity (as in part (7)) of the first or-
der derivative of f can, in turn, be characterized by “nonnegativity” (i.e., positive
semidefiniteness) of the second order derivative. We refer to [2] for the details. Parts
(') and (i7") go analogously (exercise). QED

Specialized to n = 1, Proposition 2.7 is as follows:

Corollary 2.8 (i) Let f : S — R be a differentiable function on the open, conver
set S C R. Then f is convex [strictly convex] on S if and only if its derivative is
nondecreasing [increasing].

(17) Let f: S — R be a second order continuously differentiable function on the
open, convex set S C R. Then f is convex [strictly convex] on S if and only if [if] its
second derivative is nonnegative [positive].



Exercise 2.10 Find the smallest a € R for which f(z) := zexp(—x) is convex on
the set [or, +00).

Exercise 2.11 Consider for a, § > 0 the function f(xy,x,) := —a%x}5 on R?. Prove

the following:

a. If a + 3 <1, then f is convex on R2.

b. If o+ 3 > 1, then f is not convex on Ri, but it is still quasiconvex. Hint: use
Exercise 2.6.

Theorem 2.9 (Moreau-Rockafellar) Let f,g : R" — (—o00, +00| be convex func-
tions. Then for every xy € R”

Af (z0) + dg(o) C I(f + g)(x0).

Moreover, suppose that int dom f Ndom g # 0. Then for every xo € R™ also

O(f + g)(zo) C 0f(x0) + dg(o).

PROOF. The proof of the first part is elementary: Let & € 0f(zo) and & € 9g(x).
Then for all x € R"

f(x) > flaxo) + & (z — x0), g(x) > g(w0) + &5z — 0),

so addition gives f(x) + g(x) > f(xg) + g(xo) + (& + &) (x — xg). Hence & + & €
A(f + 9)(xo).-

To prove the second part, let £ € O(f + g)(xo). First, observe that f(xg) = +o0o
implies (f + g)(zg) = +o0, whence f + g = 400, which is impossible by £ € 9(f +
g)(zg). Likewise, g(z¢) = +o0 is impossible. Hence, from now on we know that both
f(xg) and g(zo) belong to R. We form the following two sets in R™*1.

Ap:={(z —x0,y) ER" xR :y > f(x) — f(xo) — & (x — x0)}

Ay = {(r —w0,y) : —y > g(x) — g(x0)}-

Observe that both sets are nonempty and convex (see Exercise 2.8), and that Ay N
A, = 0 (the latter follows from & € I(f + g)(z0)). Hence, by the set-set-separation
Theorem A.4, there exists (&, 1) € R™™ and « € R, (&, i) # (0,0), such that

& (x — o) + py < afor all (x,y) with y > f(x) — f(xg) — £ (x — x0),

§(x — xo) + py > o for all (x,y) with —y > g(x) — g(xo).

By (0,0) € A, we get a < 0. But also (0,e) € Ay for every e > 0, and this gives
pe < a, so < 0 (take e = 1). In the limit, for ¢ — 0, we find « > 0. Hence a = 0
and p < 0. We now claim that g = 0 is impossible. Indeed, if one had p = 0, then
the first of the above two inequalities would give

&(x — o) < 0 for all (z,y) with y > f(z) — f(z0) — &'(z — 20),
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which is equivalent to
Eh(x — w0) <0 for all z € dom f

(simply note that when f(z) < +00 one can always achieve y > f(x)— f(x¢) —&'(x —
x) by choosing y sufficiently large). Likewise, the second inequality would give

& (x — o) >0 for all z € dom g.

In particular, for Z as above this would imply &;(Z — x¢) = 0. But since 7 lies in the
interior of dom f (so for some ¢ > 0 the ball Ns(Z) belongs to dom f), the preceding
would imply

Eu =& (T +u— x0) <0 for all u € N5(0).

Clearly, this would give & = 0 (take u := §&y/2), which would be in contradiction to
(0, 1) # (0,0). Hence, we conclude p < 0. Dividing the separation inequalities by
—p and setting & 1= —&y/u, this results in

& (x — x9) <y for all (x,y) with y > f(x) — f(zo) — E(x — w0),

&o(x — o) > y for all (z,y) with —y > g(z) — g(x0).
The last inequality gives —& € dg(zo) (set y := g(xo) — g(x)) and the one but last
inequality gives £ +& € f (o) (take y := f(x) — f(20) — &' (2 —x0) +¢ and let € | 0).
Since £ = (£ + &) — &o, this finishes the proof. QED

Exercise 2.12 Show by means of an example that the condition int dom fNdom g #
() in Theorem 2.9 cannot be omitted.

Exercise 2.13 Find and prove an version of the Moreau-Rockafellar theorem that
applies to the subdifferentials of a finite sum of convex functions.

As a precursor to the Karush-Kuhn-Tucker theorem, we have now the following
application of the Moreau-Rockafellar theorem.

Theorem 2.10 Let f: R"™ — R be a convex function and let S C R™ be a nonempty
convex set. Consider the optimization problem

(P) inf f(z).

€S

Then x € S is an optimal solution of (P) if and only if there exists a subgradient
€ € 0f(x) such that )
E(x—7) >0 forallz € S. (1)



ProOF. Recall from Definition 2.3 that yg is the indicator function of S. Now
let Z € S be arbitrary. Then the following is trivial: Z is an optimal solution of (P)
if and only if
0€d(f +xs)(@).

By the Moreau-Rockafellar Theorem 2.9, we have

O(f + xs)(x) = 0f (%) + Oxs(7).

To see that its conditions hold, observe that dom f = R"™ and dom xs = S. So it
follows that T is an optimal solution of (P) if and only if 0 € df(Z) + dxs(T). By
the definition of the sum of two sets this means that Z is an optimal solution of (P)
if and only if 0 = £ + &' for some & € 0f(z) and £ € Oxg(Z). Of course, the former
means & = —¢, so —& € Oxs(Z), which is equivalent to

xs(x) > xs(z) + (=€) (z — z) for all z € R”,
ie., to (1). QED

Remark 2.11 As the application of the Moreau-Rockafellar theorem in the above
proof shows, the sufficiency part of Theorem 2.10 remains valid for a convex function
[ R" = (—o0,+00], i.e., a function that can attain the value +oo. In that same
situation the necessity also remains valid, provided that we suppose either int dom fN
S # (0 ordom fNint S # 0. In particular, this remark applies to automatic extensions
of the type introduced in Fxercise 2.5.

Exercise 2.14 Show by means of an example that, without the additional condition
suggested in Remark 2.11, it is essential in Theorem 2.10 to have a function f with
values in R. [Hint: In boundary points of dom f the subdifferential of f can be
empty, as shown in certain examples above.]

Exercise 2.15 Let S C R? be given by the following system of inequalities: & >
0,6 >0, =& + & < 2,28 438 < 11, Let f(&,&) =& + & — 861 — 208, + 89,

a. Prove that S is a convex set and that f :.S — R is convex.

b. Use Theorem 2.10 to show that & = 1, & = 3 is an optimal solution for minimizing
f over S.

c. Prove that, actually, f is strictly convex, i.e., prove that f(Ax; + (1 — N)axg) <
Af(x1) + (1 = N) f(z2) for every z1,29 € S, x1 # 2, and every A € (0,1).

d. Use part c to prove that (1,3) in part b is the only optimal solution.

Example 2.12 Let the convex set S C R? be given by the following four inequalities:
&> 0,6 20,6 > and & < 4. Let f(61,6) = (& —10)2+ (€~ 5% this measures
the squared distance from (&1, &) to the point (10,5). From a picture of S it would
seem that Z = (2,4) is the point in S that is closest to (10,5). To check that
Z = (2,4) is indeed the optimal solution of min,cgs f(z), we apply Theorem 2.10:
it is enough to verify that V f(2,4)"(& — 2,& — 4) > 0 for every (&,&) € S. Now
Vf(2,4) = (—16,—2), so it must be verified that —16(&; —2) —2(£,—4) > 0, i.e., that
8¢, + & < 20 for every (£1,&) € S. This holds, because (&1,&,) € S implies directly
& < 2 and & < 4. Since the function f is strictly convex, we conclude, moreover,
from Exercise 2.4 that (2,4) is the unique point in S that is closest to (10,5).
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Definition 2.13 The directional derivative of a convex function f : R" — (—o0, +o0]
at the point ¢y € domf in the direction d € R" is defined as

Fxo; d) = 1;%1 f(wo + )\Cj\) — f(xo)‘

The above limit is a well-defined number in [—o0, +0c]. This follows from the fol-
lowing proposition (why?), which shows that the difference quotients of a convex
functions possess a monotonicity property:

Proposition 2.14 Let f : R" — (—o0,+00] be a conver function and let x be a
point in domf. Then for every direction d € R™ and every A, Ao € R such that
Ao > A > 0 we have

f(xo+Mid) — f(zo) _ f(x0+ Aad) — f(20)

<
)\1 B /\2
PRrRoOOF. Note that
A A
To + )\1 = —1(1130 -+ )\2d> + (1 - _1)550
)\2 )\2
So by convexity of f
)\1 /\1
flzo+ Mid) < )\—f(l’o + Xod) + (1 — /\_)f<1'0)-

2 2

Simple algebra shows that this is equivalent to the desired inequality. QED

In Appendix B the Fenchel conjugation of convex functions is studied; this tool
plays a major role in the proof of the next theorem:

Theorem 2.15 Let f: R" — (—o00,+00] be a convex function and let zo be a point
in int dom f. Then

f'(xo;d) = sup E&'d for every d € R™.
£€df(xo)

Exercise 2.16 You are asked to verify the identity of Theorem 2.15 explicitly in
each of the following cases (so in each case you are asked to determine both the left
and right hand sides independently, and then to show that the identity holds).

a. Let f : R" — R be a convex function which is differentiable at the point xq €
int dom f.

b. Let 2y := 0 and let f : R" — R be the convex function given by f(z) := |z| :=
(3>, 22)1/? (Euclidean norm). Hint: here you must show, among other things, that
of(0) ={z e R": |z| < 1}.

c. Let zp:=1 and let f: R — R be the convex function f(x) := max(1,z).

The proof of Theorem 2.15 uses the following lemma:
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Lemma 2.16 Let f : R" — (—o00,4+0o0] be a convex function. Then f is continuous
at any point xy € int dom f; moreover, then Of(xy) is nonempty and compact.

Proor. Continuity: Consider g(x) := f(xz¢ + z) — f(x¢). Then g is convex and
g(0) = 0. Let ey, ..., e, be the unit vectors in R™. Denote the set {e1,...,e,, —€1,...,—€,}
by {1, ,y2n}. Let a € (0,1] be so small that zo + ay; € dom f for all i. Now for
every « € R” such that |z;| < a/n one has

i,x,>0 i,x;<0 7
so that
— |z — |z
g(z) < Y Thglae) + > “g(—ae) < B ai,
i,2,>0 i,2,<0 7

where 3 := a~! max;<;<o, (f (7o + ay;) — f(x0)) < +00. Also, for the same z one has
0=1z+43(—x),s0 ) 1

Hence g(z) > —g(—x) > —F ), |z;| holds as well. We conclude therefore that ¢ is
continuous (and even Lipschitz-continuous) at 0, i.e., f is continuous at the original
point zg.

Nonemptiness: Let g := xg,- Then by the Moreau-Rockafellar theorem O(f +
9)(zg) = 0f (xo) + 0g(z0). But both (f + g)(x) and dg(xg) are equal to R™ in this
case, so Of (zo) cannot be empty (because of ) + R™ = ().

Compactness: Exercise 2.17. QED

Exercise 2.17 Prove the compactness part of Lemma 2.16. Hint: Use the continuity
part and mimic certain components of the proof of that part.

PROOF OF THEOREM 2.15. By Proposition 2.14

Ad) — ) —
q(d) == f'(xg;d) := lig)l flao + )\> f(xo) _ ;\2% f(zo+ )\) f(xo).

Since the pointwise limit of a sequence of convex functions is convex, it follows that
q : R™ — Ris convex (by the infimum expression for ¢(d) the fact that zo € int dom f
implies automatically ¢(d) < 400 for every d; also, ¢(d) > —oo for every d, because
of the nonemptiness part of Lemma 2.16). Hence, ¢ is continuous at every point
d € R™ (apply the continuity part of Lemma 2.16). So by the Fenchel-Moreau theorem
(Theorem B.5 in the Appendix) we have for every d

q(d) = ¢"*(d) == sup[d'¢ — q"(£)].

ceRn

Let us calculate ¢*. For any £ € R™ we have

7'(€) = supled—q(d)] = sup [¢1d— L FADZICO) g ypferg S0t AD = J(o),
dern d,A>0 A A>0 d A
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by the above infimum expression for ¢(d). Fix A > 0; then 2z := 27+ Ad runs through
all of R™ as d runs through R™. Hence

Flo + M) = flao), _ flww) = €'+ sup.[€'z — (2)]
A A '

supl¢'d —
d

Clearly, this gives

q*(§) = ililg \ ~ 1 400 otherwise

flxo) — Eag + f*(€) { 0 if ¢ € 0f (o)

where we use Proposition B.4(v). Observe that in terms of the indicator function
of the subdifferential this can be rewritten as ¢* = Xpy(z,). Now that ¢* has been
calculated, we conclude from the above that for every d € R

f/(l"o; d) = Q(d) = q**(d) = X};f(;co)(d) = Sup ftd,
£€0f(x0)

which proves the result. QED
ProoOF OF PROPOSITION 2.6. By Theorem 2.15 we get

Vf(xg)'d= sup &'d.
£€df(xo)

The remainder of the proof is left as an exercise.

Theorem 2.17 (Dubovitskii-Milyutin) Let fi,--, f : R" — (=00, +00] be con-
vex functions and let xo be a point in NI int dom f;. Let f : R™ — (—o00,400] be
gien by

f(z) = max fi(x)

1<i<m

and let I(xg) be the (nonempty) set of all i € {1,---,m} for which fi(xo) = f(xo).
Then
Of(x9) = co Uicr(w) Ofi(0).

PROOF. For our convenience we write I := I(xy). To begin with, observe that
¢ € Ofi(xo) easily implies £ € Jf(xg) for each i € I. Since Jf(xy) is evidently
convex, the inclusion ”D” follows with ease. To prove the opposite inclusion, let &,
be arbitrary in 0f(xzg). If { were not to belong to the compact set co U;es 0fi(xo),
then we could separate strictly (note that each set df;(z) is both closed and compact
(exercise)): by Theorem A.2 there would exist d € R™ and a € R such that

§d > a>max sup £'d = max fi(zg; d),
i€l g€ i(ao) el

where the final identity follows from Theorem 2.15. But now observe that

o filwo + Ad) — fi(wo) _ fi(wo + Ad) — fi(zo) _ o
s d) = g g ) = ) = ey fileoi )

so the above gives &d > f'(z0;d). On the other hand, by & € Jf(x¢) it follows that
f(xo 4+ Ad) > f(xo) + Nid for every A > 0, whence f'(zo;d) > &id. We thus have
arrived at a contradiction. So the inclusion ”C” must hold as well. QED
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Exercise 2.18 a. In the above proof the following property is used: if S C R" is
compact, then its convex hull co S is compact. Prove this, using the following result

of Carathéodory: in R™ every convex combination z of p > n+1 points x4, ..., z, (i.e.,
r =73 Yoyx; for a; > 0 and > 7 a; = 1) can also be written as a convex combination
of at most n + 1 points z;,,...,2;,,, C{z1,...,2p}.

b. Give an example of a closed set S C R™ for which co S is not closed (conclusion:
in the above proof it is essential to work with compactness).

Exercise 2.19 Let f(z) :=|z| on S := R. Then 0f(0) = [—1, 1] (by Exercise 2.16(b)
for n = 1). Demonstrate how this result can also be derived from Theorem 2.17.

Exercise 2.20 Show by means of an example that in Theorem 2.17 it is essential to
have zy € N;int dom f;.

3 The Kuhn-Tucker theorem for convex program-
ming

We use the results of the previous section to derive the celebrated Kuhn-Tucker theo-
rem for convex programming. Unlike its counterparts in section 4 of [1], this theorem
gives necessary and sufficient conditions for optimality for the standard convex pro-
gramming problem. First we discuss the situation with inequality constraints only.

Theorem 3.1 (Kuhn-Tucker — no equality constraints) Let f, g1, -+, gm : R" —
(—o0, +00| be conver functions and let S C R™ be a convex set. Consider the convex
programming problem

(P) inf{f(z):gi(z) <0, -, gm(z) <0}

zE€S

Let & be a feasible point of (P); denote by I1(Z) the set of alli € {1,---,m} for which
(1) T is an optimal solution of (P) if there exist vectors of multipliers u :=
(U, -+, Up) € RT and n € R™ such that the following three relationships hold:

;9:(z) =0 fori=1,---,m (complementary slackness),
0e€df(z Z u;09;(Z) + 7 (normal Lagrange inclusion),
€l(z

i'(x —z) <0 for allx € S (obtuse angle property).

(it) Conversely, if T is an optimal solution of (P) and if T € int dom fNN;cr(z)int dom g;,
then there exist multipliers iy € {0,1}, u € R, (to,u) # (0,0), and 7 € R™ such
that the complementary slackness relationship and obtuse angle property of part (i)
hold, as well as the following:

0 € ugdf(z) + Z u;09;(z) + 1 (Lagrange inclusion).
1€I(Z)
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Here the normal case is said to occur when uy = 1 and the abnormal case when
ao - 0

Remark 3.2 (minimum principle) By Theorem 2.9, the normal Lagrange inclu-
siton i Theorem 3.1 implies

—ne(f+ Y wg) ().
iel(z)
So by Theorem 2.10 and Remark 2.11 it follows that
T € argmin,¢[f(z) + Z @;g;(x)](minimum principle).
iel(z)

Likewise, under the additional condition dom f N Nierz)int dom g; # 0, this mini-
mum principle implies the normal Lagrange inclusion by the converse parts of Theo-
rem 2.10/Remark 2.11 and Theorem 2.9.

Remark 3.3 (Slater’s constraint qualification) The following Slater constraint
qualification guarantees normality: Suppose that there exists & € S such that g;(Z) < 0
fori=1,---,m. Then in part (ii) of Theorem 3.1 we have the normal case uy = 1.

Indeed, suppose we had ug = 0. For ug = 0 instead of ug = 1 the proof of the
mintmum principle in Remark 3.2 can be mimicked and gives

Z U;g;(T) < Z ;g (T

Since (U, - -+, Um) # (0,---,0), this gives Y .-, 1;g;(Z) < 0, in contradiction to com-
plementary slackness.

PrROOF OF THEOREM 3.1. Let us write I := I(Z). (i) By Remark 3.2 the
minimum principle holds, i.e., for any x € S we have

)+ > tigi(x) > f(Z)
el
(observe that ). ; 4;9;(Z) = 0 by complementary slackness). Hence, for any feasible
x € S we have
) + Zﬂz’gz‘(x) > f(2),
i€l

by nonnegativity of the multipliers. Clearly, this proves optimality of Z.
(i7) Consider the auxiliary optimization problem

(P) inf ¢(z),

z€eS

where ¢(x) := max[f(z)— f(Z), max;<;<m g;(z)]. Since Z is an optimal solution of (P),
it is not hard to see that Z is also an optimal solution of (P’) (observe that ¢(z) =
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and that z € S is feasible if and only if max;<;<,, gi(z) < 0). By Theorem 2.10
and Remark 2.11 there exists 77 in R" such that 7 has the obtuse angle property and
—7 € 0¢(Z). By Theorem 2.17 this gives

—1 € 09(T) = co(0f(T) U Uies0g(T)).

Since subdifferentials are convex, we get the existence of (ug, &) € Ry x df(z) and
(ui, &) € Ry x 0g;(T), @ € I, such that 3,y yu; =1 and

In case uy = 0, we are done by setting @; := u; for i € {0} U I and @; := 0 otherwise.
Observe that in this case (uy,---,%m) # (0,---,0) by > .., u; = 1. In case ug # 0,
we know that ug > 0, so we can set u; := u;/ug for i € {0} U and u; := 0 otherwise.
QED

Example 3.4 Consider the following optimization problem:

(P) minimize (x; — 9)2 + (1 — 2)?

4
over all (z1,22) € R such that
x% —xy < 0
xr1+ Ty — 6 S 0
-1 + 1 S 0

Since Slater’s constraint qualification clearly holds, we get that a feasible point (Z1, Z5)
is optimal if and only if there exists (&, U2, u3) € R? such that

0 _ 2<i'1 - %) _ 2@1 _ 1 B —1 77}1
<0)_ < 2oz -2) ) -1 )T )T )T
for some 7 := (71, 72)" with
i'(x —x) <0 forall x € R%r
and such that

(77 —2) = 0
Us(Ty + 79 —6) =
us(—z +1) =
Let us first deal with 7: observe that the above obtuse angle property forces 7; and

72 to be nonpositive, and z; > 0 even implies 7; = 0 for ¢ = 1,2 (this can be seen as
a form of complementarity). Since z; > 1, this means 7; = 0. Also, o = 0 stands
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no chance, because it would mean 77 < 0. Hence, 77 = 0. We now distinguish the
following possibilities for the set I := I(Z):

Case 1 (I =0): By complementary slackness, 4, = s = 13 = 0, so the Lagrange
inclusion gives T; = 9/4, T, = 2, which violates the first constraint ((9/4)% £ 2).

Case 2 (I = {1}): By complementary slackness, 1y = @3 = 0. The Lagrange
inclusion gives z; = %(1 + 1), Ty = Uy /2 + 2, so, since T3 = Ty, by definition of
I, we obtain the equation @} + 6u? + 9u; = 49/8, which has 4; = 1/2 as its only
solution. It follows then that z = (3/2,9/4)".

At this stage we can already stop: Theorem 3.1(i) guarantees that, in fact, z =
(3/2,9/4)" is an optimal solution of (P). Moreover, since the objective function

9

(z1,22) — (21— 3)* + (22 — 2)? is strictly convex, it follows that any optimal solution

of (P) must be unique. So T = (3/2,9/4)" is the unique optimal solution of (P).
Exercise 3.1 Consider the optimization problem

(P)  sup {&&: 26 + 38 < 5}
(€1,62)€R?

Solve this problem using Theorem 3.1. Hint: The set of optimal solutions does not
change if we apply a monotone transformation to the objective function. So one can
use f(&1,&) := /1€ to ensure convexity (see Exercise 2.11).

Exercise 3.2 Let a; > 0, ¢ = 1,...,n and let p > 1. Consider the optimization

problem

(P) maximize Z a;&; over (&1,...,&,) € R”
i=1

subject to g(§) :=> 1, &P = 1.
a. Show that if the constraint Y., |§[P = 1 is replaced by Y | |&[P < 1, then this
results in exactly the same optimal solutions.
b. Prove that g : R® — R, as defined above, is convex. Prove also that ¢ is in fact
strictly convex if p > 1.
c. Apply Theorem 3.1 to determine the optimal solutions of (P). Hint: Treat the
cases p = 1 and p > 1 separately.
d. Derive from the result obtained in part (¢) for p > 1 the following famous Hélder
inequality, which is an extension of the Cauchy-Schwarz inequality: |) . a;&| <

(X2, a)Ve(So, [&[P) P for all (&, ..., &) € R™ Here ¢ is defined by ¢ := p/(p — 1).

Corollary 3.5 (Kuhn-Tucker — general case) Let f, g1, -, gm : R" — (—00, +09]
be convex functions, let S C R™ be a convex set. Also, let A be a p X n-matrix and
let b € RP. Define L := {x: Az = b}. Consider the convex programming problem

(P) inf{f(z) : ga(x) <0, - gu(z) <0, Az — b =0}.

zeSs

Let & be a feasible point of (P); denote by I(Z) the set of alli € {1,---,m} for which
9i(r) = 0.
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(i) & is an optimal solution of (P) if there exist vectors of multipliers i € R,
v € RP and p € R"™ such that the complementary slackness relationship and the obtuse
angle property hold just as in Theorem 3.1(i), as well as the following version of the
normal Lagrange inclusion:

0€0f(z)+ > u0g(z)+ A'v+7.

i€l(z)

(17) Conversely, if T is an optimal solution of (P) and if both T € int dom f N
Nicr(z)int dom g; and int SN L # 0, then there exist multipliers uo € {0,1}, u € RY,
(g, u) # (0,0), and v € RP, 7 € R™ such that the complementary slackness rela-
tionship and obtuse angle property of part (i) hold, as well as the following Lagrange
inclusion:

0€adf(z)+ > w0g(z)+ A'v+7.
)

icl(

PROOF. Observe that dx.(z) = im A'. Indeed, n € dx.(Z) is equivalent to
n'(x —z) <0forall z € L, ie., ton'(z—2) =0 for all zx € R" with A(z — ) = 0.
But the latter states that n belongs to the bi-orthoplement of the linear subspace
im A, so it belongs to im A? itself. This proves the observation. Let us note that the
above problem (P) is precisely the same problem as the one of Theorem 3.1, but with
S replaced by S’ := SN L. Thus, parts (z) and (éi) follow directly from Theorem 3.1,
but now 7 as in Theorem 3.1 has to be replaced by an element (say 7’) in dxg. From
Theorem 2.9 we know that

Oxs(T) = Oxs(T) + Oxr(T),

in view of the condition int SN L # (). Therefore, 1’ can be decomposed as ' = 77+,
with 77 € Oxs(z) (this amounts to the obtuse angle property, of course), and with
n € dx.(z). By the above there exists o € R™ with n = A’ and this finishes the
proof. QED

Example 3.6 Let ¢q,---,c,, ay,- -+, a, and b be positive real numbers. Consider the
following optimization problem:
P) minimize —
(») >c

over all = (z1,---,2,)" € R, (the strictly positive orthant) such that

n
E a;r; = b.
=1

Let us try to meet the sufficient conditions of Corollary 3.5(¢). Thus, we must find a
feasible z € R™ and multipliers v € R, € R™ such that

0 _9—5_% aq
=1 : |+ U+ 7
0 —;—2 an,
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and such that the obtuse angle property holds for . To begin with the latter, since
we seek Z in the open set S := R, the only 7 with the obtuse angle property is
7 = 0. The above Lagrange inclusion gives Z; = (¢;/(0a;))"/? for all i. To determine 7,
which must certainly be positive, we use the constraint: b =", a;z; = >, (aic;/0)"?,
which gives v = (3, (a;c;)'/%/b)%. Thus, all conditions of Corollary 3.5(i) are seen to
hold: an optimal solution of (P) is &, given by

C; b
N

and it is implicit in our derivation that this solution is unique (exercise).

Tr; =

Remark 3.7 By using the relative interior (denoted as "ri”) of a convex set, i.e.,
the interior relative to the linear variety spanned by that set, one can obtain the
following improvement of the nonempty intersection condition in Theorem 2.9: it is
already enough that ri dom f N dom g is nonempty. Since one can also prove that
A(ri S) =i A(S) for any convexr set S C R™ and any linear mapping A : R" — RP
[2, Theorem 4.9], it follows that the nonempty intersection condition in Corollary 3.5
can be improved considerably into ri SN L # () or, equivalently, into b € A(ri S).

Exercise 3.3 In the above proof of Corollary 3.5 the fact was used that for a linear
subspace M of R"™ the following holds: let

M* = {zeR":z'¢ =0 forall £ € M},

This is a linear subspace itself (prove this), so M+ := (M+)+ is well-defined. Prove
that M = M*+. Hint: This identity can be established by proving two inclusions;
one of these is elementary and the other requires the use of projections.

Exercise 3.4 What becomes of Corollary 3.5 in the situation where there are no
inequality constraints (i.e., just equality constraints)? Derive this version.

Exercise 3.5 Use Corollary 3.5 to prove the following famous theorem of Farkas.
Let A be a p X n-matrix and let ¢ € R™. Then precisely one of the following is true:

(1) JpernAz <0 (componentwise) and 'z >0, (2) 3,cpr A'y = c.

Hint: Show first, by elementary means, that validity of (2) implies that (1) cannot
hold. Next, apply Corollary 3.5 to a suitably chosen optimization problem in order
to prove that if (1) does not hold, then (2) must be true.
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A Standard material on convexity

Definition A.1 A set S in R” is said to be convez if for every xy,z9 € S the line
segment {Axy + (1 — Az : 0 < A < 1} belongs to S.

For instance, a hyperplane S = {z € R": p'x =a} oraball S = {z € R" : |x — x| <
B} are examples of convex sets. However, the sphere S = {x € R™ : |z — z¢| = [}
provides an example of a set that is not convex (8 > 0). It is easy to see that
arbitrary intersections of convex sets are again convex; also finite sums of convex sets
are convex again.

Theorem A.2 (strict point-set separation [1, Thm. 2.4.4]) LetS be a nonempty
closed convex subset of R™ and let y € R™"\S. Then there exists p € R, p # 0, such
that

sup p'w < ply.
z€S
PROOF. It is a standard result that there exists & € S such that sup,.q |y — s| =
|y — 2| (consider a suitable closed ball around y and apply the theorem of Weierstrass
[1, Thm. 2.3.1]). By convexity of S, this means that for every z € S and every
A€ (0,1]
ly — Az + (1= Na)|* = |y — 2"

Obviously, the expression on the left equals
ly— &= Mz —2)|* = |y — 2" = 2\(y — 2)"(z — &) + X’z — 2],
so the above inequality amounts to
2M(y — 2)'(z — &) < NP|z — 2]?

for every « € S and every A € (0,1]. Dividing by A > 0 and letting A go to zero then
gives
(y—2z)-(r—2)<Oforallzes.

Set p := y — Z; then p # 0 (note that p = 0 would imply y € S). We clearly have
p'z < pli. Also, we have now p't > ply, for otherwise (y — )" (2 — y) > 0 would
imply y = 2 € S, which is impossible. QED

For our next result, recall that 0S5 := clS N cl(R™\S) = clS\int S denotes the
boundary of a set S C R".

Theorem A.3 (supporting hyperplane [1, Thm. 2.4.7]) Let S be a nonempty
convex subset of R™ and let y € 0S. Then there ezists ¢ € R", ¢ # 0, such that

sup ¢'z < q'y.

zecl S
In geometric terms, H := {x € R" : ¢'x = ¢'y} is said to be a supporting hyperplane
for S at y: the hyperplane H contains the point y and the set S (as well as cl S) is
contained the halfspace {x € R™ : p'x < ply}.
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PROOF. Let Z :=cl S; then 0S C 0Z (exercise). Of course, Z is closed and it is
easy to show that Z is convex (use limit arguments). So there exists a sequence (yy)
in R™\ Z such that yx — y. By Theorem A.2 there exists for every k a nonzero vector
pr € R™ such that

t t
SUp P& < PiYk-
r€Z

Division by |pg| turns this into

t t
SUp ¢y < qxYk;
T€Z

where qx, := px/|pr| belongs to the unit sphere of R™. This sphere is compact (Bolzano-
Weierstrass theorem), so we can suppose without loss of generality that (gx) converges
to some ¢, |q| =1 (so ¢ is nonzero). Now for every z € Z the inequality ¢ix < ¢lyx,
which holds for all &, implies

¢'z = lim g < lim gy, = q'y,
and the proof is finished. QED

Theorem A.4 (set-set separation [1, Thm. 2.4.8]) Let Sy, Sy be two nonempty
convex sets in R™ such that S; NSy = 0. Then there exist p € R", p#0, and o € R
such that

sup p'z < a < inf ply.

€S| yES2
In geometric terms, H := {x € R" : p'z = a} is said to be a separating hyperplane
for S1 and Ss: each of the two convex sets is contained in precisely one of the two
halfspaces {x € R™ : p'z < a} and {x € R" : p'z > «a}.

PRrROOF. It is easy to see that S := S — S5 is convex. Now 0 ¢ S, for otherwise
we get an immediate contradiction to S; NSy = (. W distinguish now two cases: (i)
0€clSand (it) 0 Zcl S.

In case (i) we have 0 € S, so by Theorem A.3 we then have the existence of a
nonzero p € R” such that

p'z <0 forevery 2 € S =8, — S, (2)

i.e., for every z = x — y, with x € S] and y € S,. This gives p'x < p'y for all x € S}
and y € Sy, whence the result.

In case (ii) we apply Theorem A.2 to get immediately (2) as well. The result
follows just as in case (7). QED

Theorem A.5 (strong set-set separation [1, Thm. 2.4.10]) Let Sy, Sy be two
nonempty closed convex sets in R™ such that S;NSy = () and such that S, is bounded.
Then there exist p € R™, p #0, and o € R, B € R such that

sup p'e < a < B < inf ply.

r€eST YyES2

PROOF. As in the previous proof, it is easy to see that S := S; — S5 is convex.

Now S is also seen to be closed (exercise). As in the previous proof, we have 0 ¢ S.
We can now apply Theorem A.2 to get the desired result, just as in case (ii) of the
previous proof. QED
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B Fenchel conjugation

Definition B.1 For a function f : R" — (—o0, +-00] the (Fenchel) conjugate function
of fis f*:R" — [—00, +0], given by
f1(€) = sup¢'z — f(2)].

z€R™

By repeating the conjugation operation one also defines the (Fenchel) biconjugate of

*

f, which is simply given by f** := (f*)*.
Example B.2 Consider f: R — R, given by

xlogx if x >0,
f(z) = 0 ifx=0,
+oo ifz <.

Observe that this function is convex. Then (counting 0log0 as 0) we clearly have
(&) = sup,so&x — xlogz for the conjugate. For an interior maximum in Ry (by
concavity of the function to be maximized) the necessary and sufficient condition is
§—logr—1=0,1ie., x=exp({—1), which gives the value £x —xlogz = exp(§ —1).
Since this value is positive, we conclude that the point z = 0 stands no chance for the
maximum, i.e., the maximum is always interior, as calculated above, giving f*(£) =
exp(&—1) for the conjugate function. We can also determine the biconjugate function:
by definition, f**(x) = supgcg #§ —exp(§ —1). If # < 0, then, by exp({ —1) — 0
as & — —oo, the supremum value is clearly +o00. Hence, f**(z) = 400 for x < 0.
If x > 0, then setting the derivative of the concave function { — z§ — exp(§ — 1)
equal to zero gives a solution (whence a global maximum) for £ = logz + 1. Hence
f**(z) = xlogx for x > 0. Finally, if x = 0, then the supremum of —exp(§ — 1) is
clearly the limit value 0. So f**(0) = 0. We conclude that f** = f in this example.
The Fenchel-Moreau theorem below will support this observation.

Exercise B.1 Determine for each of the following functions f the conjugate function
f* and verify also explicitly if f = f** holds.

a. f(x) =ax®>+bx+c,a>0,

b. f(x) = || + |z =1,

c. f(x)=2a%/afor x>0 and f(x) = +oo for x <0 (here a > 1).

d. f = xp, where B is the closed unit ball in R".

Example B.3 Let K be a nonempty convex cone in R” (recall that a cone (at zero)
is a set such that ax € K for every a > 0 and = € K; cf. Definition 2.5.1 in [1]). Let
f = xK. Then

fr(€) =sup&lo =

rzeK

Recall here that K*, the polar cone of K, is defined by K* := {{ € R" : 'z <
0 for all z € K'}. Hence, we conclude that (xx)* = xx*-

Denote the closure of K by K. We also observe that £ € 9y z(0) is equivalent to
Eor<Oforallz € K,ie., to&x<0forallz € K,ie., to& € K*.

+o00  otherwise.

{ 0 ifée K™,
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Proposition B.4 Let f, g : R™ — (—00, +0].
() If f > g then [* < g".
(12) If f*(x) = —oc0 for some x € R", then f = +oo.
(1ii) For every xzo, £ € R"

(&) > €29 — f(zo) (Young’s inequality).

(iv) f > f*.
(v) For every o, £ € R”

15(€) = 29 — f(x0) if and only if € € Of (x).
Exercise B.2 Give a proof of Proposition B.4.
Theorem B.5 (Fenchel-Moreau) Let f : R" — (—o0,+00| be conver. Then
f(zo) = [ (xo) if and only if [ is lower semicontinuous at xg.

PROOF. One implication is very simple: if f(xq) = f**(z0), and if z,, — x¢ then
liminf, f(z,) > liminf, f**(x,) by Proposition B.4(iv). Also, liminf, f**(z,) >
f**(xo) because every conjugate, being the supremum of a collection of continuous
functions, is automatically lower semicontinuous. So we conclude that liminf,, f(x,) >
[*(xo) = f(x0), i-e., f is lower semicontinuous at x.

In the converse direction, by Proposition B.4(iv) it is enough to prove f**(z¢) > r
for an arbitrary r < f(zo), both when f(z¢) < 400 and when f(z() = +oc.

Case 1: f(xg) < +00. It is easy to check that C' :=epi f := {(z,7) € R" xR :
r > f(x)}, the epigraph of f, is a convex set in R"*! (this is Theorem 3.2.2 in [1] — as
can be seen immediately from its proof, it continues to hold for functions with values
in (—o0, 00| and we know already that this theorem also holds for sets with empty
interior). Hence, the closure cl C' is also convex. We claim now that (zq,r) & cl C.
For suppose (xg,r) would be the limit of a sequence of points (x,,y,) € C. Then
Yn > f(xy) for each n, and in the limit this would give » > liminf, f(z,) > f(zo) by
lower semicontinuity of f at xg. This contradiction proves that the claim holds. We
may now apply separation [1, Theorem 2.4.10]: there exist & € R and p =: (§, ) #
(0,0), with £, € R™ and i € R, such that

Ea+ py < a < Exg + pr for all (z,y) € C. (3)

It is clear that u < 0 by the definition of C. Also, it is obvious that p # 0 (just
consider what happens if we take (z,y) = (zo, f(20)) in (3) — and we may do this by
virtue of f(xy) € R). Hence, we can divide by —x in (3) and get

r— f(z) < &xo—r for all z € dom f.

Notice that this inequality continues to hold outside dom f as well; thus, f*(§;) <
&g — r, which implies the desired inequality f**(zg) > r.

Case 2a: f = 4o00. In this case, the desired result is trivial, for f* = —oo, so
= +o0.
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Case 2b: f(z1) < 400 for some x1 € R™. We can repeat the proof of Case 1 until
(3). If u happens to be nonzero, then of course we finish as in Case 1. However, if
=0 we only get

Er < a < &g for all x € dom f

from (3). We then repeat the full proof of Case 1, but with z, replaced by x; and r
by f(z1) — 1. This gives the existence of £ € R™ such that

'r — f(x) < &xy — f(ay) + 1 for all x € dom f.
Now for any A > 0, observe that by the two previous inequalities
flx) > (E+ Xo)'w — &2y + f(z1) — 1 — ) for all z € R™,
which implies f*(£+ A) < &'y — f(21) + 1+ Aa. By definition of f**(x), this gives
f (@) = A&wo — ) + &'wo — a1 + f(21) — 1,

which implies f**(zq) = +oo, by letting A go to infinity (note that fzo — a > 0 by
the above). QED

Corollary B.6 (bipolar theorem for cones) Let K be a closed conver cone in
R"™. Then K = K™ := (K*)*.

PROOF. Observe that f := xx is a lower semicontinuous convex function. Hence,
f** = f by Theorem B.5. By Example B.3 we know that f* = x g+, so f*™ = xx=
follows by another application of this fact. Hence xx = xx+. QED

Exercise B.3 Prove Farkas’ theorem (see Exercise 3.5) by means of Corollary B.6.

Exercise B.4 Redo Exercise 3.3 by making it a special case of Corollary B.6.
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