
Alternating direction method of multipliers

(ADMM)

Again, this material is mostly pulled from [BPC+10]. I have uploaded
the paper to T-square so you can download it if you are interested.

ADMM extends the method of multipliers in such away that we
get back some of the decomposability (i.e. ability to parallelize) of
standard dual ascent algorithms. It also gives us a flexible framework
for incorporating many types of convex constraints, though we will
again focus on linear equality constraints to start.

ADMM splits the optimization variable into two parts, x and z,
and solves programs of the form

minimize
x,z

f0(x) + h(z) subject to Ax +Bz = c.

The basic idea is to rotate through 3 steps:

1. Minimize the (augmented) Lagrangian over x with z and the
Lagrange multipliers ⌫ fixed.

2. Minimize the (augmented) Lagrangian over z with x and ⌫

fixed.

3. Update the Lagrange multipliers using gradient ascent as be-
fore.

If the splitting is done in a careful manner, it can happen that each
of the subproblems above can be easily computed and we can handle
general convex constraints (more on this later).

To make the three steps above more explicit: the augmented La-

1

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

grangian is

L⇢(x, z,⌫) = f0(x)+h(z)+⌫

T(Ax+Bz�c)+
⇢

2
kAx+Bz�ck22,

and the general ADMM iteration is

x

(k+1) = argmin
x

L⇢(x, z
(k)
,⌫

(k))

z

(k+1) = argmin
z

L⇢(x
(k+1)

, z,⌫

(k))

⌫

(k+1) = ⌫

(k) + ⇢(Ax

(k+1) +Bz

(k+1) � c).

The only real di↵erent between ADMM and MoM is the we are
splitting the primal minimization into two parts instead of optimizing
over (x, z) jointly.

Scaled form.

We can write the ADMM iterations in a more convenient form by
substituting

µ =
1

⇢

⌫.

Then by “completing the square”, you can check at home that

⌫

T(Ax+Bz�c)+
⇢

2
kAx+Bz�ck22 =

⇢

2
kAx+Bz�c+µk22�

⇢

2
kµk22,

and so we can write:

ADMM:

x

(k+1) = argmin
x

✓
f0(x) +

⇢

2
kAx +Bz

(k) � c + µ

(k)k22
◆

z

(k+1) = argmin
z

✓
h(z) +

⇢

2
kAx

(k+1) +Bz � c + µ

(k)k22
◆

µ

(k+1) = µ

(k) +Ax

(k+1) +Bz

(k+1) � c

2

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

Example: the LASSO

The following `1 regularized least-squares problem:

minimize
x

1

2
kAx� bk22 + ⌧kxk1

is called the LASSO; it is prevalent all across machine learning, model
selection in statistics, and compressed sensing in signal processing.
The ⌧ > 0 above is a user-defined “smoothing parameter”.

Taking

f0(x) =
1

2
kAx� bk22 and h(z) = ⌧kzk1,

we can rewrite this in ADMM form as

minimize
x,z

f0(x) + h(z) subject to x� z = 0.

The x update is

x

(k+1) = argmin
x

✓
1

2
kAx� bk22 +

⇢

2
kx� z

(k) + µ

(k)k22
◆
.

With both z

(k) and µ

(k) fixed, this is equivalent to the least-squares
problem:

min
x

����


Ap
⇢ I

�
x�


bp

⇢(z(k) � µ

(k))

�����
2

2

.

This problem has a closed-form solution:

x

(k+1) =
⇣
A

T
A + ⇢I

⌘�1 ⇥
A

T p
⇢ I
⇤ 

bp
⇢(z(k) � µ

(k))

�

=
⇣
A

T
A + ⇢I

⌘�1
(AT

b + ⇢(z(k) � µ

(k)))

3

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

The z update update problem is:

minimize
z

⌧kzk1 +
⇢

2
kz � x

(k+1) � µ

(k)k22.

Using the results from the Technical Details section below, we have
a closed form for this as well:

z

(k+1) = T⌧/⇢(x
(k+1) + µ

(k)),

where T�(·) is the term-by-tern soft-thresholding operator,

(T�(v))[n] =

8
><

>:

v[n]� �, v[n] > �,

0, |v[n]|  �,

v[n] + �, v[n] < ��.

To summarize:

ADMM iterations for the LASSO

x

(k+1) =
⇣
A

T
A + ⇢I

⌘�1
(AT

b + ⇢(z(k) � µ

(k))),

z

(k+1) = T⌧/⇢(x
(k+1) + µ

(k)),

µ

(k+1) = µ

(k) + x

(k+1) � z

(k+1)
.

4

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

Convergence properties

We will state one convergence result. If the following two conditions
hold:

1. f0 and h are closed, proper, and convex (i.e. their epigraphs
are nonempty closed convex sets),

2. strong duality holds,

then

• Ax

(k)+Bz

(k)�c ! 0 as k ! 1. That is, the primal iterates
are asymptotically feasible.

• f0(x
(k)) + h(z(k)) ! p

? as k ! 1. That is, the value of the
objective function approaches the optimal value asymptotically.

• ⌫

(k) ! ⌫

? as k ! 1, where ⌫? is a dual optimal point.

Under additional assumptions, we can also have convergence to a
primal optimal point, (x(k)

, z

(k)) ! (x?
, z

?) as k ! 1.

See [BPC+10, Section 3.2] for further discussion and references.

5

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

Convex constraints

We can write the general program

minimize
x2C

f0(x),

where C is a closed convex set, in ADMM form as

minimize
x2RN

f0(x) + h(z) subject to x� z = 0,

where h(z) is the indicator function for C:

h(z) =

(
0, z 2 C,
1, z 62 C.

Note that in this case, the z update is a closest-point-to-a-convex-set
problem. For fixed v 2 RN ,

arg min
z

h(z) +
⇢

2
kz � vk22 = argmin

z2C
kz � vk2

= PC(v) (closest point in C to v).

ADMM iteration for general convex constraints:

x

(k+1) = argmin
x

✓
f0(x) +

⇢

2
kx� z

(k) + µ

(k)k22
◆
,

z

(k+1) = PC

⇣
x

(k+1) + µ

(k)
⌘
,

µ

(k+1) = µ

(k) + x

(k+1) � z

(k+1)
.

Of course, this algorithm is most attractive when we have a fast
method for computing PC(·).

6

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

Example: Basis Pursuit

A good proxy for finding the sparsest solution to an underdetermined
system of equations Ax = b is to solve

minimize
x

kxk1 subject to Ax = b.

To put this in ADMM form, we are solving

minimize
x,z

f0(x) + h(z) subject to x� z = 0,

with

f0(x) = kxk1, and h(z) =

(
0, Az = b,

1, otherwise.

The projection onto C = {x : Ax = b} can be given in closed form
using the pseudo-inverse A+ of A as

PC(v) = A

+(b�Av) + v

= (I�A

T(AA

T)�1
A)v +A

T(AA

T)�1
b,

where the last equality comes from A

+ = A

T(AA

T)�1 when A has
full row rank.

The updates in this case are

x

(k+1) = argmin
x

✓
kxk1 +

⇢

2
kx� z

(k) + µ

(k)k22
◆

= T1/⇢(z
(k) � µ

(k))

z

(k+1) = (I�A

T(AA

T)�1
A)(x(k+1) + µ

(k)) +A

T(AA

T)�1
b

µ

(k+1) = µ

(k) + x

(k+1) � z

(k+1)
.

7

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

Example: Linear programming

Consider the general linear program

minimize
x

c

T
x subject to Ax = b, x � 0,

where A is an M ⇥N matrix with full row rank1. We can put this
in ADMM form by first eliminating the equality constraints, then
introducing the indication function for the non-negativity constraint.

Let Q be an N ⇥ (N � M) matrix whose columns span Null(A),
and let x0 be any point such that Ax0 = b. Then we can re-write
the LP as

minimize
w

c

T(x0 +Qw) subject to x0 +Qw � 0,

which we can write in ADMM form as

minimize
w

c

T
x0 + c

T
Qw + h(z) subject to Qw � z = �x0,

where

h(z) =

(
0, z � 0,

1, otherwise.

(We can drop the cTx0 from the objective since it does not depend
on either of the optimization variables.)

Notice that when Q has full column rank, the program

minimize
w

v

T
w +

1

2
kQw � yk22,

1
The full row rank assumption is not at all essential; I am just making it to

keep things streamlined.

8

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

has the closed-form solution

w

? = (QT
Q)�1(QT

y � v).

Also, the projection onto the non-negative orthant C = {x : x � 0}
is

PC(v) = (v)+, or (PC(v))[n] =

(
v[n], v[n] � 0,

0, v[n] < 0.

For the general linear program, then, the ADMM iterations are

w

(k+1) = argmin
w

✓
1

⇢

c

T
Qw +

1

2
kQw � z

(k) + x0 + µ

(k)k22
◆

= (QT
Q)�1


Q

T(z(k) � x0 � µ

(k))� 1

⇢

Q

T
c

�
,

z

(k+1) = PC(Qw

(k+1) + x0 + µ

(k))

=
⇣
Qw

(k+1) + x0 + µ

(k)
⌘

+

µ

(k+1) = µ

(k) +Qw

(k+1) � z

(k+1) + x0.

Notice that especially when the columns ofQ are orthogonal,QT
Q =

I, all of these steps are very simple.

9

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

Distributed Recovery/Regression/Classification

using ADMM

By being very crafty with how we do the splitting, we can use ADMM
to solve certain kinds of optimization programs in a distributed man-
ner.

We consider (this material comes from [BPC+10, Sec. 8]) the general
problem of “fitting” a vector x 2 RN to an observed vector b 2 RM

through an M ⇥N matrix A. We will encourage x to have certain
structure using a regularizer. This type of problem is ubiquitous in
signal processing and machine learning — the math stays the same,
only the words change from area to area.

At a high level, we are interested in solving

minimize
x

Loss(Ax� b) + Regularizer(x)

where the M ⇥ N matrix A and the M -vector b are given. Notice
that

Loss(·) : RM ! R, and Regularizer(·) : RN ! R.
We will assume that one or both of these functions are separable, at
least at the block level. This means we can write

Loss(Ax� b) =
BX

i=1

`i(Aix� bi),

where Ai are Mi ⇥ N matrices formed by partitioning the rows of
A, and bi 2 RMi is the corresponding part of b. For separable
regularizers, we can write

Regularizer(x) =
CX

i=1

ri(xi),

10

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

where the xi 2 RNi partition the vector x. These two types of
separability will allow us to divide up the optimization in two di↵erent
ways.

Example: Inverse Problems and Regression

Two popular methods for solving linear inverse problems and/or cal-
culating regressors are solving

minimize
x

1

2
kAx� bk22 + ⌧kxk22,

(Tikhonov regularization or ridge regression), and

minimize
x

1

2
kAx� bk22 + ⌧kxk1,

(basis pursuit denoising or the LASSO).

These both clearly fit the separability criteria, as

kAx� bk22 =
MX

m=1

(hx,ami � b[m])2,

kxk22 =
NX

n=1

(x[n])2

kxk1 =
NX

n=1

|x[n]|.

where aT
m is the mth row of A.

11

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

Example: Support Vector Machines

Previously, we saw how if we are given a set of M training examples
(xm, ym), where xm 2 RN and ym 2 {�1, 1}, we can find a maximum
margin linear classifier by solving

min
w,z

kwk22 subject to ym(z � hxm,wi) + 1  0, m = 1, . . . ,M.

With the classifier trained (optimal solution w

?
, z

? computed), we
can assign a label y0 to a new point x0 using

y

0 = sign(hx0
,w

?i + z

?).

Instead of enforcing the constraints above strictly, we can allow some
errors by penalizing mis-classifications on the training data appro-
priately. One reasonable way to do this is make the loss zero if
ym(z � hxm,wi) + 1  0, and then have it increase linearly as this
quantity exceeds zero. That is, we solve

min
w,z

MX

m=1

`(ym(z � hxm,wi) + 1) + kwk22,

where `(·) is the hinge loss

`(u) = (u)+ =

(
0, u  0,

u, u > 0.

So “soft margin” SVM fits our model as what is inside the `(·) can
be written as an a�ne function of the optimization variables:

ym(z � hxm,wi) + 1 =
⇥
�ymxm ym

⇤ 
w

z

�
+ 1.

12

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

Splitting across examples

This framework is useful when we have “many measurements of a
small vector” or ”large volumes of low-dimensional data”.

We partition the rows of A and entries of b:

A =

2

664

A1

A2
...

AB

3

775 , b =

2

664

b1

b2
...
bB

3

775 .

If the loss function is separable over this partition, our optimization
problem is

minimize
x

BX

i=1

`i(Aix� bi) + r(x),

where r(·) is the regularizer. We start by splitting the optimization
variables in the loss function and those in the regularizer, arriving at
the equivalent program

minimize
x

BX

i=1

`i(Aix� bi) + r(z) subject to x� z = 0.

This does not make the Lagrangian for the primal update separable,
as the Ai are still tying together all of the entries in x. The trick is
to introduce B di↵erent xi 2 RN , one for each block, and then use
the constraints to make them all agree. This is done with

minimize
x

1

,...,xB

BX

i=1

`i(Aixi�bi)+r(z) subject to xi�z = 0, i = 1, . . . , B.

13

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

The augmented Lagrangian for this last problem is

L⇢(x1, . . . ,xB, z,µ1, . . . ,µB) =
BX

i=1

`i(Aixi�bi)+
⇢

2

BX

i=1

kxi�z+µik22+r(z),

where µi are the (rescaled) Lagrange multipliers for the constraint
xi � z = 0.

As the Lagrangian is separable over the B blocks, each of the primal
updates for the xi can be performed independently. This makes the
ADMM iteration

x

(k+1)
i = argmin

xi

✓
`i(Aixi � bi) +

⇢

2
kxi � z

(k) + µ

(k)
i k22

◆

i = 1, . . . , B

z

(k+1) = argmin
z

r(z) +
⇢

2

BX

i=1

kz � x

(k+1)
i � µ

(k)
i k22

!

µ

(k+1)
i = µ

(k)
i + x

(k+1)
i � z

(k+1)

i = 1, . . . , B.

The z update can be written in terms of the average of the x
(k+1)
i .

To see this, first note that

BX

i=1

kz � vik22 = Bkzk22 � 2

*

z,

BX

i=1

vi

+

+
NX

i=1

kvik22

= Bkzk22 � 2B hz, v̄i + Bkv̄k22 +

�Bkv̄k22 +
NX

i=1

kvik22

!

= Bkz � v̄k22 +

�Bkv̄k22 +
NX

i=1

kvik22

!

.

14

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

where v̄ = 1
B

PB
i=1 vi. Thus

arg min
z

r(z) +
⇢

2

BX

i=1

kz � x

(k+1)
i � µ

(k)
i k22

!

= argmin
z

✓
r(z) +

B⇢

2
kz � x̄

(k+1) � µ̄

(k)k22
◆

Distributed ADMM (dividing rows of A)

x

(k+1)
i = argmin

xi

✓
`i(Aixi � bi) +

⇢

2
kxi � z

(k) + µ

(k)
i k22

◆

i = 1, . . . , B

z

(k+1) = argmin
z

✓
r(z) +

B⇢

2
kz � x̄

(k+1) � µ̄

(k)k22
◆

µ

(k+1)
i = µ

(k)
i + x

(k+1)
i � z

(k+1)

i = 1, . . . , B.

where

x̄

(k+1) =
1

B

BX

i=1

x

(k+1)
i , , µ̄

(k) =
1

B

BX

i=1

µ

(k)
i .

The high-level architecture is that B separate units solve indepen-
dent optimization programs for the B xi updates. These are col-
lected and averaged, and a single optimization program is solved to
get the x update. The new z is then communicated back to each
of the B units. The Largrange multiplier update can easily be com-

15

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

puted both centrally and at the B units, so these do not have to be
communicated.

Example: the LASSO

With `i(Aixi � bi) = kAixi � bik22 and r(x) = ⌧kxk1, the ADMM
iteration becomes

x

(k+1)
i = argmin

xi

✓
kAixi � bik22 +

⇢

2
kxi � z

(k) + µ

(k)
i k22

◆

i = 1, . . . , B

z

(k+1) = T⌧/(B⇢)

⇣
x̄

(k+1) + µ̄

(k)
⌘

µ

(k+1)
i = µ

(k)
i + x

(k+1)
i � z

(k+1)

i = 1, . . . , B.

The xi updates are all small unconstrained least-squares problems
whose solutions can be computed independently; the z update is a
simple soft thresholding, and the µi updates are computed simply
by adding vectors.

Example: SVM

For the SVM, we collect the weights and the o↵set into a single
optimization vector

v =


w

z

�
2 RN+1

and use

Ai =

2

4
�y1x1 y1

... ...
�yN

1

xN
1

yN
1

.

3

5

16

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

Note that the regularization does not include the last term in v:

r(v) =
NX

n=1

|v[n]|2.

This makes the ADMM iteration

v

(k+1)
i = argmin

vi

✓
1T(Aivi + 1)+ +

⇢

2
kvi � z

(k) + µ

(k)
i k22

◆

z

(k+1)
1:N =

⇢

1 +N⇢

⇣
v̄

(k+1)
1:N + µ̄

(k)
1:N

⌘

z

(k+1)[N + 1] = v̄

(k+1)[N + 1] + µ̄

(k)[N + 1]

µ

(k+1)
i = µ

(k)
i + v

(k+1)
i � z

(k+1)
.

where x1:N is the first N entries of the vector x, and x[N + 1] is the
last entry.

Splitting across features

Similarly, we can divide up the columns of A. This is described in
[BPC+10, Section 8.3].

17

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

Technical Details: Decoupled `

1

minimization

Consider the optimization problem

minimize
z

�kzk1 +
1

2
kz � vk22, (1)

where v is a fixed vector. This program is separable:

minimize
z

�

NX

n=1

|z[n]| + 1

2

NX

n=1

(z[n]� v[n])2

= minimize
z

NX

n=1

✓
�|z[n]| + 1

2
(z[n]� v[n])2

◆

and so we can solve each 1 dimensional problem individually.

For fixed v 2 R, we can compute the minimizer of

minimize
z2R

�|z| + 1

2
(z � v)2

explicitly. This function is convex, and is di↵erentiable everywhere
except at z = 0. Away from zero, the derivative is

df

dz
=

(
� + z � v, z > 0

�� + z � v, z < 0.

For the optimal value z? to be positive, we need �+ z

?� v = 0; this
can only hold for z? > 0 if v > �. Similarly, for z? to be negative,
we need �� + z

? � v = 0; this can only hold for z? < 0 if v < ��.
If neither of these conditions hold, we must have z? = 0. Thus

z

? =

8
><

>:

v � �, v > �

0, |v|  �

v + �, v < ��.

18

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

We use T�(·) to denote the nonlinear mapping above, and so

z

? = T�(v).

T� is called a soft thresholding or shrinkage operator.

The solution to (1) just applies the shrinkage operator term by term:

z

? = T�(v), or z

?[n] = T�(v[n]).

References

[BPC+10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2010.

19

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 14:21, March 10, 2017

1 Alternating Direction Method of Multipliers

1.1 Algorithm

Consider the following optimization problem

min f(x) + g(z)

subject to Ax+Bz = c
(1)

where x ∈ Rn, z ∈ Rm, and A ∈ Rp×n, B ∈ Rp×m.
Let the primal optimal value be denoted by p∗.
For ρ > 0, the augmented Lagrangian is given by

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22

The ADMM consists of iterations

xk+1 := arg min
x
Lρ(x, z

k, yk) (2)

zk+1 := arg min
z
Lρ(x

k+1, z, yk) (3)

yk+1 :=yk + ρ(Axk+1 +Bzk+1 − c) (4)

1.1.1 Scaled Form

The ADMM is usually written in another form. First consider the residual
r = Ax+Bz − c. We have

yT r +
ρ

2
‖r‖22 =

ρ

2
‖r +

1

ρ
y‖22 −

1

2ρ
‖y‖22

=
ρ

2
‖r + u‖22 +

ρ

2
‖u‖22

where u := 1
ρy is called the scaled dual variable (y is the dual variable).

Then ADMM can be expressed as

xk+1 := arg min
x

(
f(x) +

ρ

2
‖Ax+Bzk − c+ uk‖22

)
(5)

zk+1 := arg min
z

(
g(z) +

ρ

2
‖Axk+1 +Bz − c+ uk‖22

)
(6)

uk+1 :=uk +Axk+1 +Bzk+1 − c (7)

Note that if rk = Axk +Bzk − c, then

uk = u0 +
k∑
j=1

rj

1

1.2 Convergence

In order to prove the convergence of ADMM, we need some assumptions.

Assumption 1 The functions f : Rn → R and g : Rm → R are closed,
proper and convex.

Assumption 2 The Lagrangian L(= L0) has a saddle point. That is
there exist (x∗, z∗, y∗) such that

L(x∗, z∗, y) ≤ L(x∗, z∗, y∗) ≤ L(x, z, y∗)

for all x, z, y.

Assumption 3 The Slater’s condition is satisfied. That is, there exists
(x, z) ∈ri(dom f×dom g) such that Ax+Bz = c.

Assumption 4 For each iteration, the subproblems (2), (3) are solvable.

The KKT condition of (1) is

−AT y ∈ ∂f(x), −BT y ∈ ∂g(z), Ax+Bz = c

Under the Slater’s condition, (x∗, z∗) is a solution to (1) if and only if there
exists y∗ such that (x∗, z∗), y∗ satisfy the KKT condition.
Under some conditions, the subproblems can be proved to be solvable.
Please look at [1] for reference.
Under the above assumptions, the ADMM iterates satisfy the following:

Residual convergence : rk → 0

Objective convergence : f(xk) + g(zk)→ p∗

Dual variable convergence : yk → y∗

Proof. Let (x∗, z∗, y∗) be a saddle point of L. Define

pk := f(xk) + g(zk)

V k :=
1

ρ
‖yk − y∗‖22 + ρ‖B(zk − z∗)‖22

2

We first need to prove 3 inequalities

p∗ − pk+1 ≤ (y∗)T rk+1 (8)

pk+1 − p∗ ≤ −(yk+1)T rk+1 − ρ(B(zk+1 − zk))T (−rk+1 +B(zk+1 − z∗)) (9)

V k+1 ≤ V k − ρ‖rk+1‖22 − ρ‖B(zk+1 − zk)‖22 (10)

Proof of (8) Since (x∗, z∗, y∗) is a saddle point of L, then

L(x∗, z∗, y∗) ≤ L(xk+1, zk+1, y∗)

Since Ax∗ +Bz∗ = c, L(x∗, z∗, y∗) = p∗.
Also, since pk+1 = f(xk+1) + g(zk+1), L(xk+1, zk+1, y∗) = pk+1 + (y∗)T rk+1.
Therefore, p∗ − pk+1 ≤ (y∗)T rk+1.

Proof of (9) Since xk+1 = arg minx Lρ(x, z
k, yk), by the optimal condi-

tion we have

0 ∈ ∂f(xk+1) +AT yk + ρAT (Axk+1 +Bzk − c).

Note that yk+1 = yk + ρrk+1, so yk = yk+1 − ρrk+1. Then

0 ∈ ∂f(xk+1) +AT (yk+1 − ρB(zk+1 − zk)).

This implies that xk+1 minimizes

f(x) + (yk+1 − ρB(zk+1 − zk))TAx.

Similarly, since zk+1 = arg minz Lρ(x
k+1, z, yk), we have

0 ∈ ∂g(zk+1) +BT yk + ρBT (Axk+1 +Bzk+1 − c)
= ∂g(zk+1) +BT yk + ρBT (rk+1)

= ∂g(zk+1) +BT (yk + ρrk+1)

= ∂g(zk+1) +BT yk+1

This is equivalent to zk+1 minimizes

g(z) + (yk+1)TBz.

Hence,

f(xk+1) + (yk+1 − ρB(zk+1 − zk))TAxk+1

≤ f(x∗) + (yk+1 − ρB(zk+1 − zk))TAx∗

3

Similarly,
g(zk+1) + (yk+1)TBzk+1 ≤ g(z∗) + (yk+1)TBz∗

Adding the above two inequalities and using the fact that Ax∗ + Bz∗ = c,
we have

pk+1 − p∗ ≤ (yk+1 − ρB(zk+1 − zk))TA(x∗ − xk+1) + (yk+1)TB(z∗ − zk+1)

= (yk+1)T (Ax∗ +Bz∗ −Axk+1 −Bzk+1)− ρ(B(zk+1 − zk))TA(x∗ − xk+1)

= −(yk+1)T rk+1 − ρ(B(zk+1 − zk))TA(x∗ − xk+1)

Note that A(x∗ − xk+1) = −rk+1 +B(zk+1 − z∗), then

pk+1 − p∗ ≤ −(yk+1)T rk+1 − ρ(B(zk+1 − zk))T (−rk+1 +B(zk+1 − z∗))

Proof of (10) Adding (8),(9) (and multiply by 2) gives

2(yk+1−y∗)T rk+1−2ρ(B(zk+1−zk))T rk+1+2ρ(B(zk+1−zk))T (B(zk+1−z∗)) ≤ 0
(11)

Since yk+1 = yk + ρrk+1, rk+1 = (yk+1 − yk)/ρ,

2(yk+1 − y∗)T rk+1 = 2(yk − y∗)T rk+1 + ρ‖rk+1‖22 + ρ‖rk+1‖22

=
2

ρ
(yk − y∗)T (yk+1 − yk) +

1

ρ
‖yk+1 − yk‖22 + ρ‖rk+1‖22

=
1

ρ

(
‖yk+1 − y∗‖22 − ‖yk − y∗‖22

)
+ ρ‖rk+1‖22

Since zk+1 − z∗ = (zk+1 − zk) + (zk − z∗),

ρ‖rk+1‖22 − 2ρ(B(zk+1 − zk))T rk+1 + 2ρ(B(zk+1 − zk))T (B(zk+1 − z∗))
= ρ‖rk+1 −B(zk+1 − zk)‖22 + ρ‖B(zk+1 − zk)‖22 + 2ρ(B(zk+1 − zk))T (B(zk − z∗))

Since zk+1 − zk = (zk+1 − z∗)− (zk − z∗),

ρ‖rk+1‖22 − 2ρ(B(zk+1 − zk))T rk+1 + 2ρ(B(zk+1 − zk))T (B(zk+1 − z∗))
= ρ‖rk+1 −B(zk+1 − zk)‖22 + ρ‖B(zk+1 − zk)‖22 + 2ρ(B(zk+1 − zk))T (B(zk − z∗))
= ρ‖rk+1 −B(zk+1 − zk)‖22 + ρ

(
‖B(zk+1 − z∗)‖22 − ‖B(zk − z∗)‖22

)
Combining the above, (11) is equivalent to

V k − V k+1 ≥ ρ‖rk+1 −B(zk+1 − zk)‖22

4

Recall that zk+1 minimizes g(z) + (yk+1)TBz and zk minimizes g(z) +
(yk)TBz. Then

g(zk+1) + (yk+1)TBzk+1 ≤ g(zk) + (yk+1)TBzk

and
g(zk) + (yk)TBzk ≤ g(zk+1) + (yk)TBzk+1

Hence
(yk+1 − yk)T (B(zk+1 − zk)) ≤ 0

This shows that (10) holds.

Therefore, V k is a bounded decreasing sequence. Hence, yk, Bzk are also
bounded.
By iterating (10), we have

ρ
∑(

‖rk+1‖22 + ‖B(zk+1 − zk)‖22
)
≤ V 0.

This shows that rk → 0, B(zk+1 − zk)→ 0.
Since B(zk+1 − z∗) is bounded, the right hand side of (9) tends to 0.
Moreover, the right hand side of (8) also tends to 0.
Combining the above, we have pk → p∗.
The proof that yk → y∗ can be found in [3].
For more details of the proof, please have a look at [1], [2], [3].

Reference

1. Chen L., Sun D.F., Toh K-C: A note on the convergence of ADMM
for linearly constrained convex optimization problems
2. Fazel M., Pong T.K., Sun D.F., Tseng P: Hankel matrix rank minimiza-
tion with applications to system identification and realization.
3. Boyd S., Parikh N., Chu E., Peleato B., Eckstein J.: Distributed op-
timization and statistical learning via the alternating direction method of
multipliers

5

A
Convergence Proof

The basic convergence result given in §3.2 can be found in several ref-
erences, such as [81, 63]. Many of these give more sophisticated results,
with more general penalties or inexact minimization. For completeness,
we give a proof here.

We will show that if f and g are closed, proper, and convex, and
the Lagrangian L0 has a saddle point, then we have primal residual
convergence, meaning that rk → 0, and objective convergence, meaning
that pk → p�, where pk = f(xk) + g(zk). We will also see that the dual
residual sk = ρAT B(zk − zk−1) converges to zero.

Let (x�,z�,y�) be a saddle point for L0, and define

V k = (1/ρ)‖yk − y�‖22 + ρ‖B(zk − z�)‖22,

We will see that V k is a Lyapunov function for the algorithm, i.e., a
nonnegative quantity that decreases in each iteration. (Note that V k is
unknown while the algorithm runs, since it depends on the unknown
values z� and y�.)

We first outline the main idea. The proof relies on three key inequal-
ities, which we will prove below using basic results from convex analysis

106

107

along with simple algebra. The first inequality is

V k+1 ≤ V k − ρ‖rk+1‖22 − ρ‖B(zk+1 − zk)‖22. (A.1)

This states that V k decreases in each iteration by an amount that
depends on the norm of the residual and on the change in z over one
iteration. Because V k ≤ V 0, it follows that yk and Bzk are bounded.
Iterating the inequality above gives that

ρ
∞∑

k=0

(
‖rk+1‖22 + ‖B(zk+1 − zk)‖22

)
≤ V 0,

which implies that rk → 0 and B(zk+1 − zk)→ 0 as k →∞. Multi-
plying the second expression by ρAT shows that the dual residual
sk = ρAT B(zk+1 − zk) converges to zero. (This shows that the stop-
ping criterion (3.12), which requires the primal and dual residuals to
be small, will eventually hold.)

The second key inequality is

pk+1 − p�

≤ −(yk+1)T rk+1 − ρ(B(zk+1 − zk))T (−rk+1 + B(zk+1 − z�)),
(A.2)

and the third inequality is

p� − pk+1 ≤ y�T rk+1. (A.3)

The righthand side in (A.2) goes to zero as k →∞, because B(zk+1 −
z�) is bounded and both rk+1 and B(zk+1 − zk) go to zero. The right-
hand side in (A.3) goes to zero as k →∞, since rk goes to zero. Thus
we have limk→∞ pk = p�, i.e., objective convergence.

Before giving the proofs of the three key inequalities, we derive the
inequality (3.11) mentioned in our discussion of stopping criterion from
the inequality (A.2). We simply observe that −rk+1 + B(zk+1 − zk) =
−A(xk+1 − x�); substituting this into (A.2) yields (3.11),

pk+1 − p� ≤ −(yk+1)T rk+1 + (xk+1 − x�)T sk+1.

Proof of inequality (A.3)

Since (x�,z�,y�) is a saddle point for L0, we have

L0(x�,z�,y�) ≤ L0(xk+1,zk+1,y�).

108 Convergence Proof

Using Ax� + Bz� = c, the lefthand side is p�. With pk+1 = f(xk+1) +
g(zk+1), this can be written as

p� ≤ pk+1 + y�T rk+1,

which gives (A.3).

Proof of inequality (A.2)

By definition, xk+1 minimizes Lρ(x,zk,yk). Since f is closed, proper,
and convex it is subdifferentiable, and so is Lρ. The (necessary and
sufficient) optimality condition is

0 ∈ ∂Lρ(xk+1,zk,yk) = ∂f(xk+1) + AT yk + ρAT (Axk+1 + Bzk − c).

(Here we use the basic fact that the subdifferential of the sum of a
subdifferentiable function and a differentiable function with domain
Rn is the sum of the subdifferential and the gradient; see, e.g., [140,
§23].)

Since yk+1 = yk + ρrk+1, we can plug in yk = yk+1 − ρrk+1 and
rearrange to obtain

0 ∈ ∂f(xk+1) + AT (yk+1 − ρB(zk+1 − zk)).

This implies that xk+1 minimizes

f(x) + (yk+1 − ρB(zk+1 − zk))T Ax.

A similar argument shows that zk+1 minimizes g(z) + y(k+1)T Bz. It
follows that

f(xk+1) + (yk+1 − ρB(zk+1 − zk))T Axk+1

≤ f(x�) + (yk+1 − ρB(zk+1 − zk))T Ax�

and that

g(zk+1) + y(k+1)T Bzk+1 ≤ g(z�) + y(k+1)T Bz�.

Adding the two inequalities above, using Ax� + Bz� = c, and rearrang-
ing, we obtain (A.2).

109

Proof of inequality (A.1)

Adding (A.2) and (A.3), regrouping terms, and multiplying through by
2 gives

2(yk+1 − y�)T rk+1 − 2ρ(B(zk+1 − zk))T rk+1

+ 2ρ(B(zk+1 − zk))T (B(zk+1 − z�)) ≤ 0.
(A.4)

The result (A.1) will follow from this inequality after some manipula-
tion and rewriting.

We begin by rewriting the first term. Substituting yk+1 = yk +
ρrk+1 gives

2(yk − y�)T rk+1 + ρ‖rk+1‖22 + ρ‖rk+1‖22,
and substituting rk+1 = (1/ρ)(yk+1 − yk) in the first two terms gives

(2/ρ)(yk − y�)T (yk+1 − yk) + (1/ρ)‖yk+1 − yk‖22 + ρ‖rk+1‖22.
Since yk+1 − yk = (yk+1 − y�) − (yk − y�), this can be written as

(1/ρ)
(
‖yk+1 − y�‖22 − ‖yk − y�‖22

)
+ ρ‖rk+1‖22. (A.5)

We now rewrite the remaining terms, i.e.,

ρ‖rk+1‖22−2ρ(B(zk+1−zk))T rk+1 +2ρ(B(zk+1−zk))T (B(zk+1−z�)),

where ρ‖rk+1‖22 is taken from (A.5). Substituting

zk+1 − z� = (zk+1 − zk) + (zk − z�)

in the last term gives

ρ‖rk+1 − B(zk+1 − zk)‖22 + ρ‖B(zk+1 − zk)‖22
+2ρ(B(zk+1 − zk))T (B(zk − z�)),

and substituting

zk+1 − zk = (zk+1 − z�) − (zk − z�)

in the last two terms, we get

ρ‖rk+1 − B(zk+1 − zk)‖22 + ρ
(
‖B(zk+1 − z�)‖22 − ‖B(zk − z�)‖22

)
.

110 Convergence Proof

With the previous step, this implies that (A.4) can be written as

V k − V k+1 ≥ ρ‖rk+1 − B(zk+1 − zk)‖22. (A.6)

To show (A.1), it now suffices to show that the middle term
−2ρr(k+1)T (B(zk+1 − zk)) of the expanded right hand side of (A.6)
is positive. To see this, recall that zk+1 minimizes g(z) + y(k+1)T Bz

and zk minimizes g(z) + ykT Bz, so we can add

g(zk+1) + y(k+1)T Bzk+1 ≤ g(zk) + y(k+1)T Bzk

and

g(zk) + ykT Bzk ≤ g(zk+1) + ykT Bzk+1

to get that

(yk+1 − yk)T (B(zk+1 − zk)) ≤ 0.

Substituting yk+1 − yk = ρrk+1 gives the result, since ρ > 0.

	16-admm
	ADMM_final
	proof

