1.3.2 Characterizations of Differentiable Convex Functions

We now give some characterizations of convexity for once or twice differentiable functions.

Proposition: Let C be a nonempty convex open set. Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable over an open set that contains C.

(a) f is convex if and only if $f(z) \geq f(x) + \langle \nabla f(x), (z-x) \rangle$, for all $x, z \in C$.

(b) f is strictly convex if and only if the above inequality is strict for $x \neq z$.

Proof. (\Leftarrow) Let $x, y \in C$, $\alpha \in [0,1]$ and $z = \alpha x + (1-\alpha)y$. We have,

$$f(x) \geq f(z) + \langle \nabla f(z), (x-z) \rangle$$

$$f(y) \geq f(z) + \langle \nabla f(z), (y-z) \rangle.$$

Then,

$$\alpha f(x) + (1-\alpha)f(y) \geq f(z) + \langle f(z), (\alpha(x-z)+(1-\alpha)(y-z)) \rangle = f(z) = f(\alpha x + (1-\alpha)y)$$

Hence f is convex.

Conversely, suppose f is convex. For $x \neq z$, define $g : (0,1] \to \mathbb{R}$ by

$$g(\alpha) = \frac{f(x + \alpha(z-x)) - f(x)}{\alpha}.$$

Consider α_1, α_2 with $0 < \alpha_1 < \alpha_2 < 1$. Let $\overline{\alpha} = \frac{\alpha_1}{\alpha_2}$ and $\overline{z} = x + \alpha_2(z-x)$. Then $f(x + \overline{\alpha}(\overline{z}-x)) \leq \overline{\alpha}f(\overline{z}) + (1-\overline{\alpha})f(x)$. So,

$$\frac{f(x + \overline{\alpha}(\overline{z}-x)) - f(x)}{\overline{\alpha}} \leq f(\overline{z}) - f(x).$$

Therefore,

$$\frac{f(x + \alpha_1(z-x)) - f(x)}{\alpha_1} \leq \frac{f(x + \alpha_2(z-x)) - f(x)}{\alpha_2}.$$

So, $g(\alpha_1) \leq g(\alpha_2)$, that is, g is monotonically increasing.

Then $\langle \nabla f(x), (z-x) \rangle = \lim_{\alpha \downarrow 0} g(\alpha) \leq g(1) = f(z) - f(x)$. So we are done.

The proof for (b) is the same as (a), we just change all inequality to strict inequality. \hfill \Box

For twice differentiable functions, we have the following characterization.

Proposition: Let C be a nonempty convex set $\subset \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ be twice differentiable over an open set that contains C. Then:

(a) If $\nabla^2 f(x)$ is positive semidefinite for all $x \in C$, then f is convex over C.

(b) If $\nabla^2 f(x)$ is positive definite for all $x \in C$, then f is strictly convex over C.

\hfill 1
(c) If C is open and f is convex over C, then $\nabla^2 f(x)$ is positive semidefinite for all $x \in C$.

Proof. (a) For all $x, y \in C$,

$$f(y) = f(x) + \langle \nabla f(x), (y - x) \rangle + \frac{1}{2} (y - x)^T \nabla^2 f(x + \alpha(y - x))(y - x)$$

for some $\alpha \in [0, 1]$. Since $\nabla^2 f$ is positive semidefinite, we have

$$f(y) \geq f(x) + \langle \nabla f(x), (y - x) \rangle, \forall x, y \in C.$$

Hence, f is convex over C.

(b) We have $f(y) > f(x) + \langle \nabla f(x), (y - x) \rangle$ for all $x, y \in C$ with $x \neq y$ since $\nabla^2 f$ is positive definite.

(c) Assume there exist $x \in C$ and $z \in \mathbb{R}^n$ such that $z^T \nabla^2 f(x)z < 0$. For z with sufficiently small norm, we have $x + z \in C$ and $z^T \nabla^2 f(x + \alpha z)z < 0$ for all $\alpha \in [0, 1]$. Then

$$f(x + z) = f(x) + \langle \nabla f(x), z \rangle + z^T \nabla^2 f(x + \alpha z)z < f(x) + \langle \nabla f(x), z \rangle.$$

This contradicts the convexity of f over C. Hence, $\nabla^2 f$ is indeed positive semidefinite over C. \qed

1.4 Relative Interior

Consider $I = [0, 1] \subset \mathbb{R}$. Then the interior of I is (0,1). However, if we consider I as a subset in \mathbb{R}^2, then the interior of I is empty. This motivates the following definition.

Definition: (Relative Interior) Let $C \subset \mathbb{R}^n$. We say that x is a relative interior point of C if $x \in B(x; \epsilon) \cap \text{aff}(C) \subset C$, for some $\epsilon > 0$. The set of all relative interior point of C is called the relative interior of C, and is denoted by $\text{ri}(C)$. The relative boundary of C is equal to $\text{cl}(C) \setminus \text{ri}(C)$.

Lemma: Let Δ_m be an m-simplex in \mathbb{R}^n with $m \geq 1$. Then $\text{ri}(\Delta_m) \neq \emptyset$.

Proof. Let $x_0, ..., x_m$ be the vertices of Δ_m. Let

$$\bar{x} := \frac{1}{m+1} \sum_{i=0}^{m} x_i$$

Note that $V := \text{span}\{x_1 - x_0, ..., x_m - x_0\}$ is the m-dimensional subspace parallel to $\text{aff}(\Delta_m) = \text{aff}\{x_0, ..., x_m\}$. Hence for all $x \in V$, there exists unique λ_i such that

$$x = \sum_{i=1}^{m} \lambda_i (x_i - x_0)$$

2
Let $\lambda_0 := -\sum_{i=1}^{m} \lambda_i$, then $(\lambda_0, ..., \lambda_m) \in \mathbb{R}^{m+1}$ and

$$x = \sum_{i=0}^{m} \lambda_i x_i, \text{ with } \sum_{i=0}^{m} \lambda_i = 0$$

Let $L : V \rightarrow \mathbb{R}^{m+1}$ be the mapping that sends x to $(\lambda_0, ..., \lambda_m)$. It is easy to check that L is linear and thus continuous. Hence there exists δ such that $||L(u)|| < 1$ if $||u|| < \delta$.

Let $x \in (\bar{x} + B(0, \delta)) \cap \text{aff}(\Delta_m)$ Then, $x = \bar{x} + u$, where $||u|| < \delta$.

Since $x, \bar{x} \in \text{aff}(\Delta_m)$ and $u = x - \bar{x}$, $u \in V$. Hence $||L(u)|| < \frac{1}{m+1}$.

Suppose $L(u) = (\mu_0, ..., \mu_m)$, then $u = \sum_{i=0}^{m} \mu_i x_i$ and $x = \sum_{i=0}^{m} (\frac{1}{m+1} + \mu_i) x_i$.

Since $\sum_{i=0}^{m} \mu_i = 0$, $\sum_{i=0}^{m} (\frac{1}{m+1} + \mu_i) = 1$. Therefore, $x \in \Delta_m$.

Thus $(\bar{x} + B(0; \delta)) \cap \text{aff}(\Delta_m) \subseteq \Delta_m$, so $\bar{x} \in \text{ri}(\Delta_m)$.

Proposition: Let C be a nonempty convex set. Then $\text{ri}(C)$ is nonempty.

Proof. Let m be the dimension of C.

If $m = 0$, then C must be a singleton. Hence $\text{ri}(C) \neq \emptyset$.

Suppose $m \geq 1$. We first show that there exists $m+1$ affinely independent elements $x_0, ..., x_m \in C$.

Let $\{x_0, ..., x_k\}$ be a maximal affinely independent set in C.

Consider $K := \text{aff}(\{x_0, ..., x_k\})$. $K \subseteq \text{aff}(C)$ since $\{x_0, ..., x_m\} \subseteq C$.

Suppose $y \in C$ but $y \notin K$. Then, $\{x_0, ..., x_k, y\}$ is also affinely independent, which is a contradiction. Therefore $C \subseteq K$ and hence $\text{aff}(C) \subseteq K$. Then

$$k = \dim(K) = \dim(\text{aff}(C)) = m$$

Therefore, there exists $m+1$ affinely independent elements $x_0, ..., x_m \in C$.

Let Δ_m be the m-simplex formed by $\{x_0, ..., x_m\}$. By above, $\text{aff}(\Delta_m) = \text{aff}(C)$.

Since $\text{ri}(\Delta_m)$ is not empty, it follows that $\text{ri}(C)$ is also nonempty. □