
1.2 Convex and Affine Hulls

1.2.1 Convex Hull

Definition:(Convex Hull)
Let X be a subset of Rn. The convex hull of X is defined by

conv(X) :=
⋂
{C| C is convex and X ⊆ C}

In other words, conv(X) is the smallest convex set containing X.
The next proposition provides a good representation for elements in the convex
hull.

Proposition: For any subset X of Rn,

conv(X) =
{ m∑
i=1

λixi|
m∑
i=1

λi = 1, λi ≥ 0, xi ∈ X
}

Proof. Let C =
{∑m

i=1 λixi|
∑m
i=1 λi = 1, λi ≥ 0, xi ∈ X

}
. Clearly, X ⊆ C.

Next, we check that C is convex.
Let a =

∑p
i=1 αiai, b =

∑q
j=1 βjbj be elements of C, where ai, bi ∈ C with

αi, βj ≥ 0 and
∑
αi =

∑
βj = 1. Suppose λ ∈ [0, 1], then

λa+ (1− λ)b =

p∑
i=1

λαiai +

q∑
j=1

(1− λ)βjbj .

Since
p∑
i=1

λαi +

q∑
j=1

(1− λ)βj = λ

p∑
i=1

αi + (1− λ)

q∑
j=1

βj = 1

we have λa + (1 − λ)b ∈ C. Hence, C is convex. Also, conv(X) ⊆ C by the
definition of conv(X).
Suppose a =

∑
λiai ∈ C. Then since each ai ∈ X ⊆ conv(X) and conv(X) is

convex, we have a ∈ conv(X). Therefore, conv(X) =C.

Let a, b ∈ Rn, define the interval

[a, b) := {λa+ (1− λ)b| λ ∈ (0, 1]}

The intervals (a, b], (a, b) are defined similarly.

Lemma: For a convex set C ∈ Rn with nonempty interior, take a ∈ Co and
b ∈ C. Then [a, b) ⊂ Co.

Proof. Since b ∈ C, for any ε > 0, we have b ∈ C + εB, where B denotes the
closed unit ball centered at 0.
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Take λ ∈ (0, 1] and let xλ := λa+ (1− λ)b. Let ε be such that a+ ε 2−λλ B ⊂ C.

xλ + εB = λa+ (1− λ)b+ εB

⊂ λa+ (1− λ)[C + εB] + εB

= λa+ (1− λ)C + (2− λ)εB

⊂ λ[a+ ε
2− λ
λ

B] + (1− λ)C

⊂ λC + (1− λ)C ⊂ C

Hence xλ ∈ Co and [a, b) ⊂ Co.

1.2.2 Affine Sets and Affine Hull

Given a, b ∈ Rn, the line connecting them is defined as

L[a, b] := {λa+ (1− λ)b| λ ∈ R}

Note that there is no restriction on λ.

Definition:(Affine Set) A subset S of Rn is affine if for any a, b ∈ S, we
have L[a, b] ⊆ S.

Definition:(Affine Combination)
Given x1, ..., xm ∈ Rn, an element in the form x =

∑m
i=1 λixi, where

∑m
i=1 λi =

1 is called an affine combination of x1, ..., xm.

Proposition: A set S is affine if and only if it contains all affine combina-
tion of its elements.

Definition:(Affine Hull) The affine hull of a set X ⊆ Rn is

aff(X) :=
⋂
{S| S is affine and X ⊆ S}

Proposition: For any subset X of Rn,

aff(X) =
{ m∑
i=1

λixi|
m∑
i=1

λi = 1, xi ∈ X
}

In fact, an affine set S ⊂ Rn is of the form x + V , where x ∈ S and V is a
vector space called the subspace parallel to S.

Lemma: Let S be nonempty. Then the following are equivalent:

1. S is affine
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2. S is of the form x+ V for some subspace V ⊂ Rn and x ∈ S.

Also, V is unique and equals to S − S.

Proof. Suppose S is affine. We first assume 0 ∈ S. Let x ∈ S and γ ∈ R. Since
0 ∈ S, we have γx + (1 − γ)0 = γx ∈ S. Now, suppose x, y ∈ S. Then x + y =
2( 1

2x + 1
2y) ∈ S. Hence, S is closed under addition and scalar multiplication.

Therefore, S = 0 + S is a linear subspace. If 0 /∈ S, then 0 ∈ S − x for any
x ∈ S. So S − x is a linear subspace. Therefore, S = x+ V .
The other direction is simple, just use the fact that V is a linear subspace.
Now suppose S = x1 + V1 = x2 + V2, where x1, x2 ∈ S, V1, V2 are linear
subspaces. Then x1 − x2 + V1 = V2. Since V2 is a subspace, x1 − x2 ∈ V1. So
V2 = x1 − x2 + V1 ⊆ V1. Similarly, V1 ⊆ V2. Therefore V is unique.
Since S = x + V, so V = S − x ⊆ S − S. Let u, v ∈ S and z = u − v. Then
S− v = V by the uniqueness of V . So z ∈ S− v = V and hence S−S ⊆ V .

Definition:(Dimension of affine and convex sets) The dimension of aff(X)
is defined to be the dimension of the subspace parallel to X. The dimension of
a convex set C is defined to be the dimension of aff(C).

Definition:(Affinely Independent) x0, ..., xm ∈ Rn are affinely independent
if [∑

λixi = 0,
∑

λi = 0
]

=⇒ [λi = 0 for all i]

Proposition: x0, ..., xm ∈ Rn are affinely independent if and only if x1 −
x0, ..., xm − x0 are linearly independent.

Proof. Suppose x0, ..., xm are affinely independent. Suppose

m∑
i=1

λi(xi − x0) = 0

Let λ0 := −
∑m
i=1 λi, then we have

λ0x0 +

m∑
i=1

λixi = 0

Since
∑m
i=0 λi = 0, λi = 0 for all i. Hence, x1 − x0, ..., xm − x0 are linearly

independent.
The converse follows directly from the definition

Lemma: Let S := aff({x0, ..., xm}), where xi ∈ Rn. Then span{x1−x0, ..., xm−
x0} is the subspace parallel to S.
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Proof. Let V be the subspace parallel to S. Then S − x0 = V .
Hence span{x1 − x0, ..., xm − x0} ⊆ V .
Let x ∈ V, then x+ x0 ∈ S. So

x+ x0 =

m∑
i=0

λixi, where
∑

λi = 1

Therefore

x =

m∑
i=1

λi(xi − x0) ∈ span{x1 − x0, xm − x0}

Proposition: x0, ..., xm are affinely independent in Rn if and only if its affine
hull is m-dimensional.

Proof. Suppose x0, ..., xm are affinely independent. Then x1 − x0, ..., xm − x0
are linearly independent. Therefore, V = span{x1 − x0, ..., xm − x0} is m-
dimensional. Since V is the subspace parallel to aff({x0, ..., xm}), aff({x0, ..., xm})
is m-dimensional.
The converse is proven similarly.

Definition:(m-Simplex)Let x0, ..., xm be affinely independent in Rn. Then
the set

∆m := conv({x0, ..., xm})
is called a m-simplex in Rn with vertices xi.

Proposition: Consider a m-simplex ∆m with vertices x0, ..., xm. For every
x ∈ ∆m, there is a unique element (λ0, ..., λm) ∈ Rm+1

+ such that

x =
∑

λixi,
∑

λi = 1.

Proof. The existence follows directly from the definition. We only need to show
the uniqueness.
Suppose (λ0, ..., λm), (µ0, ..., µm) ∈ Rm+1

+ satisfy

x =
∑

λixi =
∑

µixi,
∑

λi =
∑

µi = 1

Then ∑
(λi − µi)xi = 0,

∑
(λi − µi) = 0

Since x0, ..., xm are affinely independent, λi − µi = 0 for all i.

Definition: The cone generated by a set X is the set of all nonnegative combi-
nation of elements in X. A nonnegative (positive) combination of x1, x2, ..., xm
is of the form

m∑
i=1

λixi, where λi ≥ 0 (λi > 0).
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Next, we prove a important theorem concerning convex hulls.

Theorem:(Caratheodory’s Theorem) Let X be a nonempty subset of Rn.

(a) Every nonzero vector of cone(X) can be represented as a positive combina-
tion of linearly independent vectors from X.

(b) Every vector from conv(X) can be represented as a convex combination of
at most n+ 1 vectors from X.

Proof. (a) Let x ∈ cone(X) and x 6= 0. Suppose m is the smallest integer such
that x is of the form

∑m
i=1 λixi, where λi > 0 and xi ∈ X. Suppose that xi are

not linearly independent. Therefore, there exist µi with at least one µi positive,
such that

∑m
i=1 µixi = 0. Consider γ, the largest γ such that λi − γµi ≥ 0 for

all i. Then
∑m
i=1 (λi − γµ)xi is a representation of x as a positive combination

of less than m vectors, contradiction. Hence, xi are linearly independent.
(b) Consider Y = {(x, 1) : x ∈ X}. Let x ∈ conv(X). Then x =

∑m
i=1 λixi,

where
∑m
i=1 λi = 1, so (x, 1) ∈ cone(Y ).

By (a), (x, 1) =
∑l
i=1 λ

′
i(xi, 1), where λi > 0. Also, (x1, 1), ..., (xl, 1) are linearly

independent vectors in Rn+1(at most n+ 1). Hence, x =
∑l
i=1 λ

′
ixi,

∑m
i=1 λ

′
i =

1

Proposition: Let X ⊆ Rn be a compact set. Then conv(X) is compact.

Proof. Let {xk} be a sequence in conv(X). By Caratheodory’s Theorem,

xk =

n+1∑
i=1

λki x
k
i

where λki ≥ 0, xki ∈ X and
∑n+1
i=1 λ

k
i = 1.

Note that the sequence {(λk1 , ..., λkn+1, x
k
1 , ..., x

k
n+1)} is bounded. Then it has a

limit point (λ1, ..., λn+1, x1, ..., xn+1), where
∑n+1
i=1 λi = 1 and xi ∈ X.

Hence
∑n+1
i=1 λixi ∈ conv(X) is a limit point of the sequence xk.

Therefore, conv(X) is compact.
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