1.2 Convex and Affine Hulls
1.2.1 Convex Hull

Definition:(Convex Hull)
Let X be a subset of R™. The convex hull of X is defined by

conv(X) := ﬂ{C\ C'is convex and X C C}

In other words, conv(X) is the smallest convex set containing X.
The next proposition provides a good representation for elements in the convex
hull.

Proposition: For any subset X of R",
CODV(X)Z{ZAIL'QL‘” Z/\ZZL )\iZO, .IiEX}
i=1 i=1

Proof. Let C = {Zzl Nzl S N =1, 0 >0, z; € X}. Clearly, X C C.
Next, we check that C' is convex.

Let a = Y7, ya;, b = Z§=1 B;b; be elements of C, where a;,b; € C' with

a;,3; >0and Y a; =) f; =1. Suppose A € [0, 1], then
P q
Aa+(1=Nb= Aea;+ Y _(1—N)B;b;.
i=1 j=1

Since , . » p
DAai ) (1-NF =AY a+(1-X)) §i=1
i1 j=1 i=1 Jj=1

we have Aa + (1 — A\)b € C. Hence, C is convex. Also, conv(X) C C by the
definition of conv(X).

Suppose a = Y \;a; € C. Then since each a; € X C conv(X) and conv(X) is
convex, we have a € conv(X). Therefore, conv(X) =C. O

Let a,b € R™, define the interval
[a,b) :={Aa+ (1 —X)b| X € (0,1]}
The intervals (a, b], (a,b) are defined similarly.

Lemma: For a convex set C' € R™ with nonempty interior, take a € C° and
be C. Then [a,b) C C°.

Proof. Since b € C, for any € > 0, we have b € C + B, where B denotes the
closed unit ball centered at 0.



Take A € (0,1] and let ) := Aa+ (1 — A)b. Let € be such that a + e22B C C.

zx+eB=Xa+(1—-AN)b+eB
CAa+ (1-MN)[C+eB]+eB
=Xa+(1-XNC+(2-)\)eB

C Ala+e B+ (1-MNC
CAXC+(1-XNCcCC

Hence z) € C° and [a,b) C C°.

1.2.2 Affine Sets and Affine Hull

Given a,b € R", the line connecting them is defined as
Lla,b] :=={Aa+ (1 —N)b| X € R}
Note that there is no restriction on A.

Definition:(Affine Set) A subset S of R" is affine if for any a,b € S, we
have L[a,b] C S.

Definition:(Affine Combination)
Given z1, ...,z € R™, an element in the form z = " | \;z;, where Y ;- \; =

1 is called an affine combination of x1, ..., Z,.

Proposition: A set S is affine if and only if it contains all affine combina-
tion of its elements.

Definition:(Affine Hull) The affine hull of a set X C R™ is

aff(X) := m{S\ S is affine and X C S}

Proposition: For any subset X of R",
aff(X) = { > Ximi| Y N\i=1, z € X}
i=1 i=1

In fact, an affine set S C R™ is of the form = + V, where z € S and V is a
vector space called the subspace parallel to S.

Lemma: Let S be nonempty. Then the following are equivalent:

1. S is affine



2. S is of the form x + V for some subspace V C R"™ and = € S.
Also, V is unique and equals to S — S.

Proof. Suppose S is affine. We first assume 0 € S. Let € S and v € R. Since
0 € S, we have vz 4+ (1 — 4)0 = va € S. Now, suppose z,y € S. Then z +y =
2(32 + 3y) € S. Hence, S is closed under addition and scalar multiplication.
Therefore, S = 0+ S is a linear subspace. If 0 ¢ S, then 0 € S — z for any
x €S. So S — x is a linear subspace. Therefore, S =x + V.

The other direction is simple, just use the fact that V is a linear subspace.
Now suppose S = x1 + Vi = x9 + V5, where x1,22 € S, Vi, V5 are linear
subspaces. Then 1 — x5 + V43 = V5. Since V5 is a subspace, z1 — x5 € V7. So
Vo =21 —xo+ V7 C V. Similarly, V3 C V5. Therefore V' is unique.

Since S=z+V,s0V=8—-2CS—-S5. Let u,v € S and z = u —v. Then
S —wv =V by the uniqueness of V. So z € S—v =V and hence S—S CV. O

Definition:(Dimension of affine and convex sets) The dimension of aff(X)
is defined to be the dimension of the subspace parallel to X. The dimension of
a convex set C' is defined to be the dimension of aff(C').

Definition:(Affinely Independent) zo, ..., x,, € R™ are affinely independent
if

[ Xiwi =0, > A =0] = [\; =0 for all ]

Proposition: zg,...,z,, € R™ are affinely independent if and only if z; —
ZQ, .., Tm — Xo are linearly independent.

Proof. Suppose zg, ..., T, are affinely independent. Suppose

m

Z Al(l'z — 1’0) = O

i=1

Let Ao := —>.", \;, then we have

)\oxo + Z )\le =0
i=1

Since >_i" A = 0, A; = 0 for all . Hence, z1 — z,...,Zm — o are linearly
independent.
The converse follows directly from the definition O

Lemma: Let S := aff({zo, ..., z;, }), where 2; € R™. Then span{z —xg, ..., Ty —
xo} is the subspace parallel to S.



Proof. Let V be the subspace parallel to S. Then S — xg = V.
Hence span{z1 — zg, ...,Zm —To} C V.
Let x € V, then x + x9 € S. So

T+ x9 = i)\ixi, where ZAi =1
i=0

Therefore .

T = Z)‘Z(xl — xp) € span{zy — To, Tm — To}
i=1

O

Proposition: xg, ..., z,, are affinely independent in R™ if and only if its affine
hull is m-dimensional.

Proof. Suppose xq, ..., T, are affinely independent. Then x; — xg, ..., Tm — To
are linearly independent. Therefore, V' = span{x; — g, ..., &m — T} is m-
dimensional. Since V is the subspace parallel to aff({zq, ..., T }), aff ({0, ..., Zm })
is m-dimensional.

The converse is proven similarly. O

Definition:(m-Simplex)Let zy, ..., z,, be affinely independent in R™. Then
the set
Ay, = conv({zg, ..., Tim })

is called a m-simplex in R™ with vertices x;.

Proposition: Consider a m-simplex A,, with vertices zg, ..., Z,,. For every
x € A, there is a unique element (Ag, ..., Am) € RTH such that

z=Y N, 3 Ni=1

Proof. The existence follows directly from the definition. We only need to show
the uniqueness.
Suppose (Ag, s Am), (o, -y fbm) € RT+1 satisfy

Z(Ai — pi)x; =0, Z()‘z — 1) =0

Since xg, ..., , are affinely independent, A\; — u; = 0 for all 4. O

Then

Definition: The cone generated by a set X is the set of all nonnegative combi-
nation of elements in X. A nonnegative (positive) combination of z1,xa, ..., Tm
is of the form

m

> Xz, where A; >0 (A; > 0).

i=1



Next, we prove a important theorem concerning convex hulls.

Theorem:(Caratheodory’s Theorem) Let X be a nonempty subset of R™.

(a) Every nonzero vector of cone(X) can be represented as a positive combina-
tion of linearly independent vectors from X.

(b) Every vector from conv(X) can be represented as a convex combination of
at most n + 1 vectors from X.

Proof. (a) Let « € cone(X) and x # 0. Suppose m is the smallest integer such
that x is of the form 2111 Aixi, where A\; > 0 and x; € X. Suppose that x; are
not linearly independent. Therefore, there exist p; with at least one u; positive,
such that >, pi;z; = 0. Consider 7, the largest v such that \; — yu; > 0 for
all i. Then Y ", (A\; — Ju)x; is a representation of x as a positive combination
of less than m vectors, contradiction. Hence, x; are linearly independent.

(b) Consider Y = {(z,1) : € X}. Let z € conv(X). Then z = Y " Nz,
where > A\; =1, s0 (z,1) € cone(Y).

By (a), (z,1) = Zizl A (x4,1), where \; > 0. Also, (z1,1), ..., (21, 1) are linearly
independent vectors in R"!(at most n + 1). Hence, z = 22:1 Nowi, St N =
1

Proposition: Let X C R"™ be a compact set. Then conv(X) is compact.
Proof. Let {z*} be a sequence in conv(X). By Caratheodory’s Theorem,

n+1

k_ k, .k
x —E Ai X5

i=1

where \F >0, 25 € X and 30\ = 1.

Note that the sequence {(A},..., A%, 2% ... ,2% )} is bounded. Then it has a

limit point (A1, ..., Adnt1, &1, oy Tnt1), Where Z?jll Ai=1and z; € X.

Hence Y7 \iz; € conv(X) is a limit point of the sequence z*.

Therefore, conv(X) is compact. O



