1 Convex Sets and Functions

1.1 Convex Sets

Definition: (Convex sets) A subset \(C \) of \(\mathbb{R}^n \) is called convex if
\[
\lambda x + (1 - \lambda)y \in C, \quad \forall \ x, y \in C, \ \forall \lambda \in [0,1].
\]

Geometrically, it just means that the line segment joining any two points in a convex set \(C \) lies in \(C \).

![Figure 1: Examples of convex and non-convex set](image)

Definition: (Convex combination) Given \(x_1, \ldots, x_m \in \mathbb{R}^n \), an element in the form \(x = \sum_{i=1}^{m} \lambda_i x_i \), where \(\sum_{i=1}^{m} \lambda_i = 1 \) and \(\lambda_i \geq 0 \) is called a convex combination of \(x_1, \ldots, x_m \).

Proposition: A subset \(C \) of \(\mathbb{R}^n \) is convex if and only if contains all convex combination of its element.

Proof. Suppose \(C \) is convex. We will show by induction that it contains all convex combination \(\sum_{i=1}^{m} \lambda_i x_i \) of its elements.

The case \(m = 1, 2 \) is trivial, so suppose all convex combination of \(k \) elements lies in \(C \), where \(k \leq m \). Consider
\[
x := \sum_{i=1}^{m+1} \lambda_i x_i, \quad \text{where} \quad \sum_{i=1}^{m+1} \lambda_i = 1
\]

If \(\lambda_{m+1} = 1 \), then \(\lambda_1 = \cdots = \lambda_m = 0 \). Then \(x \in C \). So assume \(\lambda_{m+1} < 1 \), then
\[
\sum_{i=1}^{m} \lambda_i = 1 - \lambda_{m+1} \quad \text{and} \quad \sum_{i=1}^{m} \frac{\lambda_i}{1 - \lambda_{m+1}} = 1
\]
Then \(y = \sum_{i=1}^m \frac{\lambda_i}{1-\lambda_{m+1}} x_i \in C \). Hence
\[
x = (1 - \lambda_{m+1})y + \lambda_{m+1}x_{m+1} \in C
\]
The other direction is trivial.

Proposition: Let \(C_1 \) be a convex set of \(\mathbb{R}^n \) and let \(C_2 \) be a convex set pf \(\mathbb{R}^m \). Then the Cartesian product \(C_1 \times C_2 \) is a convex subset of \(\mathbb{R}^n \times \mathbb{R}^m \).

1.1.1 **Examples of Convex Sets**

(a) Open and closed balls in \(\mathbb{R}^n \).
(b) **Hyperplanes:** \(\{ x : \langle a, x \rangle = b, a \in \mathbb{R}^n, b \in \mathbb{R} \} \).
(c) **Halfspaces:** \(\{ x : \langle a, x \rangle \leq b, a \in \mathbb{R}^n, b \in \mathbb{R} \} \).
(d) **Non-Negative Orthant:** \(\mathbb{R}^n_+ = \{ x \in \mathbb{R}^n : x \geq 0 \} \).
(e) **Convex cones:** A set \(C \) is called a cone if \(\alpha x \in C, \forall \alpha > 0, x \in C \). A set which is convex is called a convex cone.

Proposition: Let \(\{ C_i \mid i \in I \} \) be a collection of convex sets. Then:

(a) \(\bigcap_{i \in I} C_i \) is convex, where each \(C_i \) is convex.
(b) \(C_1 + C_2 = \{ x + y : x \in C_1, y \in C_2 \} \) is convex.
(c) \(\lambda C \) is convex for any convex sets \(C \) and scalar \(\lambda \). Furthermore, \((\lambda_1 + \lambda_2)C = \lambda_1 C + \lambda_2 C \) for positive \(\lambda_1, \lambda_2 \).
(d) \(C^o, \overline{C} \) are convex, i.e. the interior and closure of a convex set are convex.
(e) \(T(C), T^{-1}(C) \) are convex, where \(T \) is a linear map.

Proof. Parts (a)-(c), (e) follows from the definition (Exercise!). Let’s prove (d).

Interior Let \(x, y \in C^o \). Then there exists \(r \) such that balls with radius \(r \) centred at \(x \) and \(y \) are both inside \(C \).

Suppose \(\lambda \in [0,1] \) and \(||z|| < r \). By convexity of \(C \), we have,
\[
\lambda x + (1 - \lambda) y + z = \lambda(x + z) + (1 - \lambda)(y + z) \in C
\]
Therefore, \(\lambda x + (1 - \lambda)y \in C^o \). Hence \(C^o \) is convex.

Closure Let \(x, y \in \overline{C} \). Then there exists sequences \(\{x_k\} \subseteq C, \{y_k\} \subseteq C \) such that \(x_k \to x, y_k \to y \). Suppose \(\alpha \in [0,1] \). Then for each \(k \),
\[
\alpha x_k + (1 - \alpha) y_k \in C
\]
But \(\alpha x_k + (1 - \alpha)y_k \to \lambda x + (1 - \lambda)y \in \overline{C} \). Hence, \(\overline{C} \) is convex. \(\square \)
1.2 Convex and Affine Hulls

1.2.1 Convex Hull

Definition: (Convex Hull)
Let \(X \) be a subset of \(\mathbb{R}^n \). The convex hull of \(X \) is defined by
\[
\text{conv}(X) := \bigcap \{ C | C \text{ is convex and } X \subseteq C \}
\]
In other words, \(\text{conv}(X) \) is the smallest convex set containing \(X \).

The next proposition provides a good representation for elements in the convex hull.

Proposition: For any subset \(X \) of \(\mathbb{R}^n \),
\[
\text{conv}(X) = \left\{ \sum_{i=1}^{m} \lambda_i x_i \mid \sum_{i=1}^{m} \lambda_i = 1, \lambda_i \geq 0, x_i \in X \right\}
\]

Proof. Let \(C = \left\{ \sum_{i=1}^{m} \lambda_i x_i \mid \sum_{i=1}^{m} \lambda_i = 1, \lambda_i \geq 0, x_i \in X \right\} \). Clearly, \(X \subseteq C \).
Next, we check that \(C \) is convex.
Let \(a = \sum_{i=1}^{p} \alpha_i a_i, b = \sum_{j=1}^{q} \beta_j b_j \) be elements of \(C \), where \(a_i, b_i \in C \) with \(\alpha_i, \beta_j \geq 0 \) and \(\sum \alpha_i = \sum \beta_j = 1 \). Suppose \(\lambda \in [0,1] \), then
\[
\lambda a + (1 - \lambda)b = \sum_{i=1}^{p} \lambda \alpha_i a_i + \sum_{j=1}^{q} (1 - \lambda) \beta_j b_j.
\]
Since
\[
\sum_{i=1}^{p} \lambda \alpha_i + \sum_{j=1}^{q} (1 - \lambda) \beta_j = \lambda \sum_{i=1}^{p} \alpha_i + (1 - \lambda) \sum_{j=1}^{q} \beta_j = 1
\]
we have \(\lambda a + (1 - \lambda)b \in C \). Hence, \(C \) is convex. Also, \(\text{conv}(X) \subseteq C \) by the definition of \(\text{conv}(X) \).
Suppose \(a = \sum \lambda_i a_i \in C \). Then since each \(a_i \in X \subseteq \text{conv}(X) \) and \(\text{conv}(X) \) is convex, we have \(a \in \text{conv}(X) \). Therefore, \(\text{conv}(X) = C \). \(\square \)