THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Homework 8 Solution Due Date: 14 November 2019

Compulsory part

- Note that D[x] is also a commutative ring with unity as D is an integral domain. To show that D[x] is an integral domain, it suffices to show that D[x] has no divisors of zero. Let f(x) = a_nxⁿ+a_{n-1}xⁿ⁻¹+...+a₁x+a₀ and g(x) = b_mx^m+b_{m-1}x^{m-1}+...+b₁x+b₀ be two polynomials in D[x] with a_n and b_m both nonzero. Because D is an integral domain, we know that a_nb_m never be zero, so the product f(x)g(x) cannot be zero because the highest power term has nonzero coefficient a_nb_m.
- 2. (a) Observe that the degree of product of two polynomials is the sum of their degrees. The units in D[x] are the units in D.
 - (b) 1 and -1
 - (c) 1, 2, 3, 4, 5 and 6.
- 3. (a) f(x) = a_nxⁿ+a_{n-1}xⁿ⁻¹+···+a₁x+a₀ and g(x) = b_mx^m+b_{m-1}x^{m-1}+···+b₁x+b₀ be two polynomials in F[x] with a_n and b_m both nonzero. By direct checking one has D(f + g) = D(f) + D(g). It shows that D is a group homomorphism. But D is not a ring homomorphism as

$$D(x \cdot x) = D(x^2) = 2x \neq 1 = 1 \cdot 1 = D(x) \cdot D(x).$$

- (b) The kernel of D is F.
- (c) The image of F[x] under D is F[x] itself.
- 4. (a) Consider the map g : F[x] → F^F where g(f(x)) is the function φ ∈ F^F such that φ(a) = f(a) for all a ∈ F. It is not difficult to see that g is a ring homomorphism and it image is P_f. So P_f is a subring of F^F.
 - (b) Let F be the finite field Z₂. A function in Z₂^{Z₂} has just two elements in both its domain and range. Thus there are only 2² = 4 such functions in all. However, Z₂[x] is an infinite set, so it isn't isomorphic to P_{Z₂}.
- 5. For p = 2, $x^2 + a$ has two possibilities $x^2 + 1$ and x^2 for which both of them are not irreducible since $x^2 + 1$ has zero 1 and x^2 has zero 0. For odd prime p, $x^p + a$ is not irreducible as

$$(-a)^p + a = -a + a = 0.$$

6. (a) Let $f(x) = \sum_{i=0}^{\infty} a_i x^i$ and $g(x) = \sum_{j=0}^{\infty} b_j x^j$. It is not difficult to check that

$$\overline{\sigma_m}(f+g) = \overline{\sigma_m}(f) + \overline{\sigma_m}(g).$$

Also we have

$$\overline{\sigma_m}(fg) = \overline{\sigma_m} \left(\sum_{n=0}^{\infty} \left(\sum_{i=0}^n a_i b_{n-i} \right) x^n \right)$$
$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^n \overline{\sigma_m} (a_i b_{n-i}) \right) x^n$$
$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^n \overline{\sigma_m} (a_i) \overline{\sigma_m} (b_{n-i}) \right) x^n$$
$$= \overline{\sigma_m}(f) \overline{\sigma_m}(g).$$

These suggest that it is a ring homomorphism.

Let $h(x) \in \mathbb{Z}_m[x]$. Then obviously (by abusing the notation) $h(x) \in \mathbb{Z}[x]$ and $\overline{\sigma_m}(h) = h$. This show that it is onto.

(b) Let f(x) = g(x)h(x) for g(x) and h(x) are both integral polynomials with the degrees of both g(x) and h(x) less than the degree n of f(x). Applying the homomorphism $\overline{\sigma_m}$, we see that

$$\overline{\sigma_m}(f(x)) = \overline{\sigma_m}(g(x))\overline{\sigma_m}(h(x))$$

forms a factorization of $\overline{\sigma_m}(f(x))$ into two polynomials of degree less than the degree n of $\overline{\sigma_m}(f(x))$, contrary to the hypothesis. Thus f(x) is irreducible in $\mathbb{Z}[x]$, and hence in $\mathbb{Q}[x]$.

(c) Considering m = 5, we see that omega (x³+17x+36) = x³+2x+1 which is irreducible over Z₅. By Part(b), we conclude that x³ + 17x + 36 is irreducible in Q[x]