# THE CHINESE UNIVERSITY OF HONG KONG <br> MATH2230 Tutorial 5 

(Prepared by Tai Ho Man)
Theorem 1. (Cauchy-Goursat theorem) If $f(z)$ is analytic at all points interior to and on a simple closed contour $C$ (the closure of the bounded component divided by the contour), then

$$
\int_{C} f(z) d z=0
$$

Remark: You may use Cauchy Riemann equation to check the analyticity. Or you may just see if the function is composed by some elementary analytic functions. (polynomial, trigonometric function, exponential function... )

Remark: Generally, analyticity is not equivalent to having an antiderivative, so this theorem is sightly different with theorem 1 in tutorial 4.

Theorem 2. Suppose that

1. $C$ is simply closed contour in counterclockwise direction;
2. $C_{k}(n=1, . ., n)$ are simply closed contour interior to $C$, all in clockwise direction, that are disjoint and whose interiors have no common points.

If $f$ is analytic on all of the contour $C$ and $C_{k}$ and throughout the multiply connected domain consisting of the points inside $C$ and exterior to each $C_{k}$, then

$$
\int_{C} f d z+\sum_{1}^{n} \int_{C_{k}} f d z=0
$$

Remark: You should draw a diagram about it.
Remark : $\int_{C} f d z=-\int_{-C} f d z$ where $C$ is in counterclockwise direction and $-C$ is in clockwise direction.

Remark: You can replace the contour $C$ with a circle or other "simple" contour in most of the case.

Theorem 3. (Cauchy Integral Formula) Let $f$ be analytic inside and on a simple closed contour C. If $z_{0}$ is interior to $C$, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}}
$$

Remark: You can see that an analytic function is uniquely determined by its boundary value. (compare with the case of real variable function)
Lemma 1. Let $h$ be continuous on a simple closed contour C. Define $H_{n}(z)=\int_{C} \frac{h(w) d w}{(w-z)^{n}}$ for $n \geq 1$ and $z$ being inside the interior of $C$. Then $H_{n}$ is analytic inside the interior of $C$ and $H_{n}^{\prime}(z)=n H_{n+1}(z)$.

Using this lemma, we have:
Theorem 4. (Generalized Cauchy Integral Formula) Let $f$ be analytic inside and on a simple closed contour $C$. If $z_{0}$ is interior to $C$, then

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}
$$

Remark: This is why analyticity implies complex infinite differentiability.

Exercise:

1. Use theorem 1 to show that the integrals are zero along the contour $|z|=1$,
(a) $\int_{C} \frac{d z}{z^{2}+2 z+2}$ (b) $\int_{C} \log (z+2) d z$.
2. Find $\int_{C} \frac{d z}{z^{2}+4}$ where $C$ represents the circle $|z-i|=2$.
3. Find $\int_{C} \frac{\cos z d z}{z\left(z^{2}+2\right)}$ where $C$ represents the square whose sides lie along $x= \pm 2$ and $y= \pm 2$.
