THE CHINESE UNIVERSITY OF HONG KONG
 MATH2230 Tutorial 2

(Prepared by Tai Ho Man)

0.1 Polynomial and Rational function

The domain of definition (or simply the domain) of a function is the set of input for which the function value is defined.

Definition 1. We call the function in the form of

$$
P_{n}(z)=a_{0}+a_{1} z+a_{2} z^{2}+. .+a_{n} z^{n} \text { for } n=0,1,2, \ldots \text { and } a_{n} \neq 0
$$

to be the polynomial of degree n.
Remark: The domain of definition of polynomial is clearly \mathbb{C}.
Remark: The condition of $a_{n} \neq 0$ is meaningful. Otherwise, the degree of the polynomial could be smaller than n.
Definition 2. Given two polynomials $P_{n}(z)$ and $Q_{m}(z)$, the function $R(z)=\frac{P_{n}(z)}{Q_{m}(z)}$ is called the rational function.

Remark: The domain of definition of rational function is clearly $\mathbb{C} \backslash\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ where $z_{1}, z_{2}, \ldots, z_{m}$ are the roots of $Q_{m}(z)=0$.

0.2 Trigonometric function

$$
\begin{aligned}
\sin z & =\frac{e^{i z}-e^{-i z}}{2 i} & \cos z & =\frac{e^{i z}+e^{-i z}}{2} \\
\sinh z & =-i \sin (i z)=\frac{e^{z}-e^{-z}}{2} & \cosh z & =\cos (i z)=\frac{e^{z}+e^{-z}}{2}
\end{aligned}
$$

Remark: The domain of definition of these trigonometric functions are clearly \mathbb{C} since that of exponential function is also \mathbb{C}.

0.3 Logarithmic function

If the logarithmic is the "inverse" of exponential function, we let $z_{0}=r e^{i \theta} \neq 0$ for $-\pi<\theta \leq \pi$ ($\theta=\operatorname{Arg}(z))$ and we expect to have

$$
\log \left(z_{0}\right)=\log \left(r e^{i \theta}\right)=\log (r)+i \theta
$$

However, $z_{0}=r e^{i \theta}=r e^{i \theta+2 k \pi i}$ for any integers k, hence we have

$$
\log \left(z_{0}\right)=\log \left(r e^{i \theta+2 k \pi i}\right)=\log (r)+i \theta+2 k \pi i
$$

It shows that the logarithmic defined in this way is not a function. We see that $\log \left(z_{0}\right)$ represent a set

$$
\log \left(z_{0}\right):=\{\log (r)+i \theta+2 k \pi i \mid k \in \mathbb{Z}\}
$$

or we will call \log is a multiple-valued function. It is quite similar to the definition of argument of a complex number. Therefore we should define logarithmic in a unique way.

Definition 3. The principal value of $\log (z)$ equals to

$$
\log (z)=\log |z|+i \operatorname{Arg}(z)
$$

where $-\pi<\operatorname{Arg}(z) \leq \pi$.

Remark 1: Since it is reasonable to define the range of the angle of z_{0} in another way, say, $z_{0}=r e^{i \theta} \neq 0$ for $a<\theta \leq 2 \pi+a$ for any real number a. Such a choice of range of the angle of z is called branch. And we can define another single-value function for \log by $\log (r)+i \theta$ with $a<\theta \leq 2 \pi+a$. (The word "principal" in definition 3 means that $a=-\pi$. We would not call the single-valued \log to be principal if $a \neq 0$.) And the range $-\pi<\theta \leq \pi$ is called principal branch. The straight line $\{z \in \mathbb{C}: \operatorname{Arg}(z)=a+2 \pi\}$ is called the branch cut.

Remark 2 : The domain of definition of $\log (z)$ is $\mathbb{C} \backslash\{0\}$ because of $\log |z|$.
Remark 3: Although $\log (z)$ can be defined on the ray $\theta=a, \log (z)$ is not continuous there (not analytic).

Remark 4: $\log (z)$ is analytic in the domain $r>0$ and $-\pi<\operatorname{Arg}(z)<\pi$ (or other branch).

0.4 Power function

Definition 4. Let $z \neq 0$ and $c \in \mathbb{C}$, the power is defined as

$$
z^{c}=e^{c \log (z)}
$$

Clearly it can be defined for other branch.
Remark: The domain of definition of power function is again $\mathbb{C} \backslash\{0\}$.
Remark: Some operations which is true in real number turn out is false in complex number:
(a) $z^{c_{1}} z^{c_{2}}=z^{c_{1}+c_{2}}$; (b) $\left(z^{c_{1}}\right)^{c_{2}} \neq z^{c_{1} c_{2}}$; (c) $(z w)^{c} \neq z^{c} w^{c}$.

0.5 Continuity of a Function

Definition 5. Let Ω be open subset of \mathbb{C} and $f: \Omega \rightarrow \mathbb{C}$. Let $z_{0} \in \Omega$, we say $\lim _{z \rightarrow z_{0}} f(z)=c$ if for all $\varepsilon>0$ there is a $\delta>0$ such that if $\left|z-z_{0}\right|<\delta$, then $|f(z)-c|<\varepsilon$.

Proposition 1. Let Ω be open subset of \mathbb{C} and $f=f_{1}+i f_{2}: \Omega \rightarrow \mathbb{C}$. Let $z_{0} \in \Omega$, then f is continuous at z_{0} if and only if f_{1} and f_{2} are continuous at z_{0}. In other words, $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$ if and only if $\lim _{z \rightarrow z_{0}} f_{1}(z)=f_{1}\left(z_{0}\right)$ and $\lim _{z \rightarrow z_{0}} f_{2}(z)=f_{2}\left(z_{0}\right)$.

0.6 Exercise

1. Compute the value of $\log (-1+\sqrt{3} i)$ with branch $-\pi<\operatorname{Arg}(z) \leq \pi$.
2. Find the domain of $f(z)=\log (z-i)$.
3. Find the principal values of $(1+i)^{i}$.
4. Describe the image under $f=e^{z}$ of the following sets:
(a) The set of $z=x+y i$ such that $x \leq 1$ and $0 \leq y \leq \pi$.
(b) The set of $z=x+y i$ such that $0 \leq y \leq \pi$.
