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5.3-1

(M1)By the Maximum-Minimum Theorem 5.3.4, we have inf f(I) = f(x0) > 0
for some x0 ∈ I. Denote α := inf f(I). f(x) ≥ inf f(I) = α,∀x ∈ I.
(M2)The negation is that for any positive number β, there exist xβ ∈ I so
that f(xβ) < β. On the contrary, suppose the negation is true and that there
exist xn ∈ [a, b] satisfying 0 < f(xn) < 1/n for any n ∈ N. Since (xn) ⊆ [a, b],
there exists a subsequence (xnk

) converges to some x0 ∈ R by Theorem 3.4.8.
We further have x0 ∈ [a, b] by the closedness of [a, b]. As f is continuous and
f(xnk

) < 1/nk,∀k ∈ N,

f(x0) = lim f(xnk
) ≤ lim 1/nk = 0.

This contradicts against the condition f(x) > 0,∀x ∈ [a, b].

5.3-3

By the Maximum-Minimum Theorem 5.3.4, we can find x1, x2 ∈ [a, b] with
f(x1) = max f(I), f(x2) = min f(I). We claim f(x1) ≥ 0 and f(x2) ≤ 0.

Now if we suppose f(x1) < 0, then since f(x1) is a supremum of f(I), for
any x ∈ [a, b], we have f(x) ≤ f(x1). By the statement of problem, we can find
y ∈ [a, b] with |f(y)| ≤ 1

2 |f(x1)|. At least, we will have

−f(y) ≤ 1

2
(−f(x1)) =⇒ 1

2
f(x1) ≤ f(y) =⇒ f(x1) <

1

2
f(x1) ≤ f(y)

which contridicts with the facts that f(x1) is an upper bound of f(I).
Similarly, if we suppose f(x2) > 0, we can find y with 1

2f(x2) ≥ f(y), which
will implies f(x2) > f(y), which leads a contridiction with the fact f(x2) is a
lower bound for f(I).

So in summary, we have f(x1) ≥ 0, f(x2) ≤ 0. Hence, by Intermediate Value
Theorem, we can find c ∈ [x1, x2] or c ∈ [x2, x1](depending on which is bigger)
such that f(c) = 0.
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5.3-12

Recall that sup{a, b} = max{a, b} = a+b+|a−b|
2 , then we have

x2 + cosx continuous =⇒
∣∣x2 − cosx

∣∣ continous =⇒ f(x)continuous

And then by Maximum-Minimum Theorem, we can find an absolute minimum
point x0 ∈ I for f on I.

Now we try to proof cosx0 = x20. For any x < x0, we know that x2 < x20.
But we note max{x2, cosx} = f(x) ≥ f(x0) = sup{x20, cosx0} ≥ x20. So we will
have x2 > x20 or cosx > x20. But x2 > x20 is impossible by our choice of x, hence
we can only have cosx > x20 for any x < x0. Take a sequence (yn) with yn → x0
and yn < x0, we will have

lim cos yn ≥ x20
and by the continuity of cosx, we have cosx0 ≥ x20.

On the other direction, we need use the fact that cosx is a decreasing function
on [0, π2 ]. The proof is similar with above. For any x > x0, we know that
cosx0 > cosx, and since max{x2, cosx} ≥ max{x20, cosx0} ≥ cosx0 > cosx,
which imply x2 > cosx0 for any x > x0. Taking x → x0 from above and we
have x20 ≥ cosx0.

Hence, combining the above results, we get x0 is indeed a solution to the
equation cosx = x2.

5.3-17

We proof the following claim first.
If f : [0, 1] → R is continous and has two different values a, b with a < b,

then f cannot has only rational (or irrational) values.
Indeed, suppose f(x1) = a, f(x2) = b, then for any c ∈ (a, b), by Interme-

diate Value Theorem, we can find x0 ∈ [x1, x2]or[x2, x1] such that f(x0) = c.
By Density Theorem, we can always find a rational number in (a, b), and we
can also find a irrational number in (a, b). So this means f has to take rational
values and irrational values. So the claim is proofed.

So from this claim, we can see that if f is not a constant, f will take at least
two different values and we can write these two vaules as a, b with a < b and
hence f has to take both rational and irrational values.

Hence if f has only rational (irrational) values, f has to be a constant.

2


