MATH2010E: Advanced Calculus I Examples and graphs

Figure 1: Caption
This is the graph $z=f(x, y)$, with $f(x, y)$ defined by

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

This function is an example that when you approach the origin along different straight lines, you would get different limits.

Figure 2: Caption
The curve labeled with c is the curve $f(x, y)=c$, where c is between -0.4 and 0.4. The function f is given as above. These curves are called level curves. From this graph, you may see that you can have $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ near the origin with $f\left(x_{1}, y_{1}\right)=0.4$ and $f\left(x_{2}, y_{2}\right)=-0.4$. This suggests that the function f is discontinuous at the origin.

Figure 3: Caption

This is the graph $z=g(x, y)$, with $g(x, y)$ defined by

$$
g(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

This function is an example that when you approach the origin along different straight lines, you would get the same limit 0 , but the function itself is discontinuous at the origin.

Figure 4: Caption

The curve labeled with c is the curve $g(x, y)=c$, where c is between -0.4 and 0.4. The function g is the one in the previous figure. The function g is discontinuous at the origin.

Figure 5: Caption

Please compare this figure with the one on the next page. They are the same graphs. This one is viewing from the positive \mathbf{z}-axis. The green curve is $x=y^{2}$. All curves are lying on the surface $z=g(x, y)$. We have chosen different curves to approach $(0,0)$ in the $x y$-plane, and see what is happening on the surface.

These two figures imitate the result that

1. If you approach the origin along a straight line, then $g(x, y)$ will get closer and closer to 0 .
2. If you approach the origin along the curve $x=y^{2}, g(x, y)$ will take constant value 0.5 along the whole curve.

Figure 6: Caption

